K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2015

B2

a, gỌI d là ƯC(N+1, 2N+3). Ta có 2n+3 - 2(n+1)chia hết cho d

=> 1 chia hết cho d => d= 1, -1

b, gọi d là ƯC(2n+3, 4n+8). Ta có:4n+8 - 2(2n+3) chia hết cho d

=> 2 CHIA HẾT CHO d. Do d là ước của số lẻ nên d= 1, -1

Nhớ cho đúng nha!!!!!!!!!!!!!!

1 tháng 5 2017

1. a, \(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)

\(A=-a+b-c+a+b+c\)

\(A=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)

\(A=0+2b+0\)

\(A=2b\)

b, Thay \(a=1;b=-1;c=2\) ta có:

\(A=\left(-1+1-2\right)+\left(1+1-2\right)\)

\(A=-2+0=-2\)

1 tháng 6 2017

Ôn tập toán 6

18 tháng 6 2019

bài 1

a, \(A=\frac{3}{x-1}\)

Để A thuộc Z suy ra 3 phải chia hết cho x-1

Suy ra x-1 thuộc ước của 3

Suy ra x-1 thuộc tập hợp -3;-1;1;3

Suy ra x tuộc tập hợp -2;0;2;4

"nếu ko thích thì lập bảng" mấy ccaau kia tương tự

18 tháng 6 2019

\(a,\)\(1,\)\(A=\frac{3}{x-1}\)

\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)

\(\Leftrightarrow x-1\inƯ_3\)

Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)

\(...........\)

\(2,\)\(B=\frac{x-2}{x+3}\)

\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)

\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)

Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)

\(.....\)

\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)

\(C\in Z\Leftrightarrow x-1\in Z\)

\(\Rightarrow x\in Z\)

11 tháng 6 2015

a)Gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

n+1 chia hết cho d

=>(2n+3)-(n+1)=n+2 chia hết cho d

Do n+1 và n+2 là 2 số nguyên liên tiếp mà d là ước chung của 2 số đó => d=1

=>2n+3 và n+1 là 2 số nguyên tố cùng nhau => phân số \(\frac{n+1}{2n+3}\) tối giản

b) làm tương tự cũng xét hiệu như thế nha!

26 tháng 6 2018

a,

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#