Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
b: =>3|x-5|=8+4=12
=>|x-5|=4
=>x-5=4 hoặc x-5=-4
=>x=9 hoặc x=1
d: =>2x+6=3-3x-2
=>2x+6=1-3x
=>5x=-5
hay x=-1
e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)
\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)
mà x>8
nên \(x\in\left\{10;17\right\}\)
a)Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
\(=\left(\frac{1}{2.2}-1\right)\left(\frac{1}{3.3}-1\right)\left(\frac{1}{4.4}-1\right)....\left(\frac{1}{98.98}-1\right)\left(\frac{1}{99.99}-1\right)\)
\(=\left(-\frac{3}{2.2}\right).\left(-\frac{8}{3.3}\right).\left(-\frac{15}{4.4}\right)...\left(-\frac{9603}{98.98}\right).\left(-\frac{9800}{99.99}\right)\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)\right].\frac{3}{2.2}.\frac{8}{3.3}.\frac{15}{4.4}...\frac{9603}{98.98}.\frac{9800}{99.99}\)
|------------------------98 số -1--------------------|
\(=\left(-1\right)^{98}.\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3.2.4.3.5...95.97.98.100}{2.2.3.3.4.4...98.98.99.99}\)
Ta sẽ rút gọn các thừa số chung ở tử và mẫu
\(=\frac{1.100}{2.99.99}\)
\(=\frac{50}{9801}\)
Vậy \(A=\frac{50}{9801}\)
cho mik hỏi bước 3 chỗ \(\frac{3}{2.2}\)sai o duoi lai la\(\frac{3}{2.3}\)vay
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(a)2x^2-98=0\)
\(2x^2=0+98\)
\(2x^2=98\)
\(x^2=98:2\)
\(x^2=49\)
\(\rightarrow x^2=7^2\)
\(\rightarrow x=7\)
Vậy x = 7
Bài 1:
a) Ta có: \(\frac{2^8\cdot4\cdot13+2^7\cdot8\cdot65}{2^9\cdot39}\)
\(=\frac{2^8\cdot4\cdot13+2^8\cdot4\cdot13\cdot5}{2^9\cdot39}\)
\(=\frac{2^{10}\cdot13\left(1+5\right)}{2^9\cdot13\cdot3}=\frac{6}{3}=2\)
b) Đặt \(A=4+2^2+2^3+2^4+...+2^{20}\)
Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow2A=2^3+2^3+2^4+...+2^{21}\)
Ta có: \(2A-A=2^3+2^{21}-2^2-2^2=8+2^{21}-8=2^{21}\)
hay \(A=2^{21}\)
Vậy: \(4+2^2+2^3+2^4+...+2^{20}=2^{21}\)