Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(sữa đề tìm \(x\) nguyên )
\(2^x+3+2^x=144\Leftrightarrow2^x+2^x=141\)
ta có : \(2^x+2^x\) là số chẳn
mà \(141\) là số lẽ \(\Rightarrow\) phương trình vô nghiệm
\(\left(x-1\right)^3-\left(x+2\right)^2=\left(2+x\right)^3-2x\left(2+3x\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^2+4x+4\right)=8+12x+6x^2+x^3-4x-6x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^2-4x-4-8-12x-6x^2-x^3+4x+6x^2=0\)
\(\Leftrightarrow-4x^2-9x-13=0\)
\(\Leftrightarrow-\left(4x^2+9x+13\right)=0\Leftrightarrow4x^2+9x+13=0\)
\(\Leftrightarrow4x^2+9x+\dfrac{81}{16}+\dfrac{127}{16}=0\Leftrightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}=0\)
ta có : \(\left(2x+\dfrac{9}{4}\right)^2\ge0\) với mọi giá trị của \(x\)
\(\Rightarrow\left(2x+\dfrac{9}{4}\right)^2+\dfrac{127}{16}\ge\dfrac{127}{16}>0\) với mọi giá trị của \(x\)
vậy phương trình vô nghiệm
Đoạn cuối bn giải sai rồi thi phải,sau khi đã tính đc và nhận biết a,b,c nhân với - 1 để có giá trị dương thì mk chỉ việc tính Denta rồi theo quy tắc để tính x1 và x2 thôi (Ý kiến riêng)
Bài 1: Tính:
a) 27 : 22 + 54 : 53. 24 - 3. 25
= 25 + 5 . 24 - 3 . 25
= 32 + 5 . 16 - 3 . 32
= 32 + 80 - 96
= 112 - 96
= 16
b) ( 37 . 35) : 310+ 5 . 24 - 73 : 7
= 312 : 310 + 5 . 24 - 72
= 32 + 5 . 24 - 72
= 9 + 5 . 16 - 49
= 9 + 80 - 49
= 89 - 49
= 40
Bài 2: Tính hợp lí:
a) ( 62007 - 62006 ) : 62006
= 62007 : 62006 - 62006 : 62006
= 6 - 1
= 5
b) ( 112003 + 112002 ) : 112002
= 11 + 1
= 12
c) 320 : ( x3 - 24 ) + 24 = 32
320 : ( x3 - 24 ) = 32 - 24 = 8
x3 - 24 = 320 : 8
x3 - 24 = 40 + 24
x3 = 64
x3 = 43 = 4
d) 130 - ( 100 + x ) = 25
( 100 + x ) = 103 - 25
100 + x = 105 - 100
x = 5
Bn ơi đừng tự ti như vậy nha !!! Mỗi người đều có một khuyết điểm mà, tri thức luôn rộng lớn bao la. Hãy làm việc đó bằng cách bn tự làm những bài kia nha.
Chúc bn hc tốt môn toán :))
2)
a) \(\left(6^{2007}-6^{2006}\right):6^{2006}\)
\(=\left(6^{2006}.6-6^{2006}.1\right):6^{2006}\)
\(=\left[6^{2006}.\left(6-1\right)\right]:6^{2006}\)
\(=6^{2006}:6^{2006}.5\)
\(=5\)
b) \(\left(11^{2003}+11^{2002}\right):11^{2002}\)
\(=\left(11^{2002}.11+11^{2002}.1\right):11^{2002}\)
\(=\left[11^{2002}.\left(11+1\right)\right]:11^{2002}\)
\(=11^{2002}:11^{2002}.12\)
\(=12\)
c) \(130:\left(x^3-24\right)+24=32\)
\(\Leftrightarrow130:\left(x^3-24\right)=32-24\)
\(\Leftrightarrow130:\left(x^3-24\right)=8\)
\(\Leftrightarrow x^3-24=\dfrac{65}{4}\)
\(\Leftrightarrow x^3=\dfrac{65}{4}+24\)
\(\Leftrightarrow x^3=\dfrac{161}{4}\)
\(\Leftrightarrow x=\sqrt[3]{\dfrac{161}{4}}\)
Vậy \(x=\sqrt[3]{\dfrac{161}{4}}\)
d) \(130-\left(100+x\right)=25\)
\(\Leftrightarrow100+x=130-25\)
\(\Leftrightarrow100+x=105\)
\(\Leftrightarrow x=105-100\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
1)
a) Gọi 2 số tự nhiên liên tiếp là a ; a+1
Ta chứng minh : a . (a+1) chia hết cho
=> a.a + a.1
=> 2a + a
Vì 2a chia hết cho 2
=> a chia hết cho 2
=> a . (a+1) chia hết cho 2 đpcm
a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)
\(=100:\left[250:\left(450-400\right)\right]\)
\(=100:\left(250:50\right)\)
\(=100:5\)
\(=20\)
b) \(109.5^2-3^2.25\)
\(=109.25-9.25\)
\(=25\left(109-9\right)\)
\(=25.100\)
\(=2500\)
c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)
\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)
\(=\left(5^2.6-20.5\right):10-20\)
\(=\left(25.6-20.5\right):10-20\)
\(=\left(150-100\right):10-20\)
\(=50:10-20\)
\(=5-20\)
\(=-15\)
a) \(3.5^2-16:2^3.2\)
\(=3.25-16:8.2\)
\(=75-2.2\)
\(=75-4\)
\(=71\)
b) \(168+\left\{\left[2\left(2^4+3^2\right)-256^0\right]:7^2\right\}\)
\(=168+\left\{\left[2\left(16+9\right)-256^0\right]:7^2\right\}\)
\(=168+\left[\left(2.25-256^0\right):7^2\right]\)
\(=168+\left[\left(50-1\right):7^2\right]\)
\(=168+\left(49:7^2\right)\)
\(=168+\left(49:49\right)\)
\(=168+1\)
\(=169\)
c) \(9^{20}:9^{18}-\left(4^2-7\right)^2+8.5^2+5600:\left(3^3+1^8\right)\)
\(=9^{20}:9^{18}-\left(16-7\right)^2+8.5^2+5600:\left(27+1\right)\)
\(=9^{20}:9^{18}-9^2+8.5^2+5600:28\)
\(=9^{20-18}-9^2+8.25+5600:28\)
\(=9^2-9^2+200+200\)
\(=81-81+200+200\)
\(=200+200\)
\(=400\)
Bài 2:
A=n(n+1)+1
Vì n;n+1 là hai số nguyên liên tiếp
nên n(n+1) chia hết cho 2
=>n(n+1)+1 không chia hết cho 2
hay A không chia hết cho 8
1. So sánh:
a) 230 và 320
Ta có :
230 = 23.10 = (23)10 = 810
320 = 32.10 = (32)10 = 910
Vì : 810 < 910
=> 230 < 320
b) 1020 và 2010
Ta có :
1020 = 102.10 = (102)10 = 10010
Vì 10010 > 2010
=> 1020 > 2010
1) So sánh :
a)\(^{2^{30}}\) và \(^{3^{20}}\)
\(^{2^{30}}\)= \(^{2^3}\).\(^{2^3}\).\(^{2^3}\).......\(^{2^3}\)
10 thừa số
=8.8.8.......8
10 thừa số
=\(^{8^{10}}\)
\(^{3^{20}}\)=\(^{3^2}\).\(^{3^2}\).\(^{3^2}\)......\(^{3^2}\)
10 thừa số
=9.9.9.....9
10 thừa số
=\(^{9^{10}}\)
Vì \(^{8^{10}}\)<\(^{9^{10}}\)\(\Rightarrow\) \(^{2^{30}}\)<\(^{3^{20}}\)
b) \(^{10^{20}}\) và\(^{20^{10}}\)
\(^{10^{20}}\)=\(^{10^2}\).\(^{10^2}\).\(^{10^2}\).......\(^{10^2}\)
10 thừa số
=100.100.100....100
10 thừa số
=\(^{100^{10}}\)
Vì \(^{100^{10}}\)>\(^{20^{10}}\)\(\Rightarrow\)\(^{10^{20}}\)>\(^{20^{10}}\)