K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

1. a. \(\left(a+b\right)^2-4\)

\(=\left(a+b+2\right)\left(a+b-2\right)\)

b. \(4a^2+8ab-3a-6b\)

\(=4a\left(a+b\right)-3\left(a+b\right)\)

\(=\left(4a-3\right)\left(a+b\right)\)

c. \(a^2+b^2-c^2-2ab\)

\(=\left(a+b\right)^2-c^2\)

\(=\left(a+b+c\right)\left(a+b-c\right)\)

d. \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(5x-3\right)\left(x-y\right)\)

2. a. \(\dfrac{1-x}{x}+\dfrac{x}{1+x}\)

\(=\dfrac{1-x^2}{x\left(1+x\right)}+\dfrac{x^2}{x\left(1+x\right)}\)

\(=\dfrac{1-x^2+x^2}{x\left(1+x\right)}=\dfrac{1}{x\left(1+x\right)}\)

b. \(\dfrac{4}{x+2}+\dfrac{3}{2-x}+\dfrac{12}{x^2-4}\)

\(=\dfrac{4x-8}{\left(x+2\right)\left(x-2\right)}-\dfrac{3x+6}{\left(x+2\right)\left(x-2\right)}+\dfrac{12}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{4x-8-3x-6+12}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)

3. \(\dfrac{x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)

\(=\dfrac{3x^3-x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{3x^3+x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{2x^2}{x\left(y-3x\right)\left(y+3x\right)}\)

\(=\dfrac{3x^3-x^2y-3x^3-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{-xy+2x}{\left(3x+y\right)\left(3x-y\right)}\)

Thay x = 1 và y = 2 vào phân thức ta được:

\(=-\dfrac{2+2.2}{\left(3+2\right)\left(3-2\right)}=-\dfrac{6}{5}\)

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

17 tháng 12 2018

Bài 1:

a) Sửa đề \(x\left(x+y\right)-3y\left(x+y\right)\)

\(=\left(x+y\right)\left(x-3y\right)\)

b) \(x^2+2019x-xy-2019y\)

\(=x\left(x+2019\right)-y\left(x+2019\right)\)

\(=\left(x+2019\right)\left(x-y\right)\)

c) \(x^2-9y^2-4x+4\)

\(=\left(x^2-4x+4\right)-9y^2\)

\(=\left(x-2\right)^2-\left(3y\right)^2\)

\(=\left(x-2-3y\right)\left(x-2+3y\right)\)

d) \(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(3x-2\right)\)

Bài 2:

a) \(\left(6x^3y^3-27xy^2\right):\left(3x^2y\right)-2xy^2\)

\(=6x^3y^3:3x^2y-27xy^2:3x^2y-2xy^2\)

\(=2xy^2-\dfrac{9y}{x}-2xy^2\)

\(=-\dfrac{9y}{x}\)

b) \(\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}+\dfrac{3x+2}{4-x^2}\)

\(=\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}-\dfrac{3x+2}{x^2-4}\)

\(=\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(1-2x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2\left(x+2\right)+\left(1-2x\right)\left(x-2\right)-3x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x+4+x-2-2x^2+4x-3x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2x}{x+2}\)

Bài 3:

a) \(3x\left(2x-3\right)-x\left(6x+4\right)=7-12x\)

\(\Rightarrow6x^2-9x-6x^2-4x=7-12x\)

\(\Rightarrow-13x=7-12x\)

\(\Rightarrow-13x+12x-7=0\)

\(\Rightarrow-x-7=0\)

\(\Rightarrow-x=7\)

\(\Rightarrow x=-7\)

b) \(3\left(x-5\right)-2x^2+10x=0\)

\(\Rightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

14 tháng 11 2017

Bài 1.

a) 5(4x - y)

= 20x - 5y

b) (x + 2)(x - 2) - (x - 3)(x + 1)

= x2 - 4 - [(x - 1) - 2][(x - 1) + 2)]

= x2 - 4 - [(x - 1)2 - 4]

= x2 - 4 - (x - 1)2 + 4

= x2 - x2 + 2x - 1

= 2x - 1

Bài 2.

a) x - y + 5x - 5y

= (x + 5x) - (y + 5y)

= 6x - 6y

= 6(x - y)

b) 3x2 - 6xy + 3y2 - 12z2

= 3(x2 - 2xy + y2 - 4z2)

= 3[(x2 - 2xy + y2) - 4z2]

= 3[(x - y)2 - 4z2]

= 3(x - y + z)(x - y - z)

Bài 3.

(x3- y3) : (x2 + xy + y2)

= (x - y)(x2 + xy + y2) : (x2 + xy + y2)

= x - y

Thay x = \(\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức đại số ta có:

\(\dfrac{2}{3}\)- \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

Vậy (x3- y3) : (x2 + xy + y2) = \(\dfrac{1}{3}\) tại x = \(\dfrac{2}{3}\) và y = \(\dfrac{1}{3}\)

26 tháng 11 2017

a) \(A=\left(3x-2\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)\)

\(\Leftrightarrow A=\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)+\left(3x-2\right)^2\)

\(\Leftrightarrow A=\left[\left(x+1\right)-\left(3x-2\right)\right]^2\)

\(\Leftrightarrow A=\left(x+1-3x+2\right)^2\)

\(\Leftrightarrow A=\left(3-2x\right)^2\)

Thay \(x=\dfrac{3}{2}\) vào biểu thức A ta được:

\(\left(3-2.\dfrac{3}{2}\right)^2=\left(3-3\right)^2=0^2=0\)

Vậy giá trị của biểu thức A tại \(x=\dfrac{3}{2}\) là 0

b) \(B=\dfrac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-3x^2}\)

\(\Leftrightarrow B=\dfrac{x^2y\left(y-x\right)+xy^2\left(y-x\right)}{3\left(y^2-x^2\right)}\)

\(\Leftrightarrow B=\dfrac{\left(y-x\right)\left(x^2y+xy^2\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(x+y\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(y+x\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy}{3}\)

Thay \(x=-3\)\(y=\dfrac{1}{2}\) vào biểu thức B ta được:

\(\dfrac{\left(-3\right).\dfrac{1}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{-1}{2}\)

Vậy giá trị của biểu thức B tại \(x=-3\)\(y=\dfrac{1}{2}\)\(\dfrac{-1}{2}\)

c) \(C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)

\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{x^2-9}\)

\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\) MTC: \(\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)-\left(x-3\right)\left(1-x\right)+2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{\left(x^2+3x+x+3\right)-\left(x-x^2-3+3x\right)+\left(2x-2x^2\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{x^2+3x+x+3-x+x^2+3-3x+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2}{x-3}\)

Thay \(x=5\) vào biểu thức C ta được:

\(\dfrac{2}{5-3}=\dfrac{2}{2}=1\)

Vậy giá trị của biểu thức C tại \(x=5\) là 1

18 tháng 9 2017

a) 5x - 15y = 5(x - 3y)

b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y

= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y

= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y

c) 14x2y2 - 21xy2 + 28x2y

= 7xy.xy - 7xy.3y + 7xy.4x

= 7xy(xy - 3y + 4x)

= 7xy[(xy - 3y) + 4x]

= 7xy[y(x - 3) +4x]

d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)

= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )

= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]

e) x3 - 3x2 + 3x - 1

= x2.x - 3x.x + 3.x - 1

= x(x2-3x+3) - 1

g) 27x3 + \(\dfrac{1}{8}\)

= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)

= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))

h) (x+y)3 - (x-y)3

= 2(3x2y) + 2y3

f) (x+y)2 - 4x2

= -3x2 + y(2x + y)

24 tháng 9 2018

h,f ?????

giải rõ hơn nha

5 tháng 12 2017

Đăng ít thôi.

5 tháng 12 2017

~ bt làm hăm giúp mình câu 2+3

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

24 tháng 12 2018

Bài 2:

a. \(x\left(x^2+5\right)=x^3+5x\)

b. \(\left(3x-5\right)\left(2x+1\right)-\left(6x^2-5\right)\)

\(=6x^2-7x-5-6x^2+5=-7x\)

c. \(\left(2x+3\right)\left(2x-3\right)-\left(2x+1\right)^2\)

\(=4x^2-9-4x^2-4x-1=-4x-10=\)

d. \(\left(2x^4+x^3-3x^2+5x-2\right):\left(x^2-x+1\right)=2x^2+3x-2\)

Bài 3:

a. \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

b. \(x^2-2x-y^2+1=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\)

24 tháng 12 2018

Câu 1:

a,

\(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{1-2x+x^2}\)

= \(\left[\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right].\dfrac{3x}{\left(x-1\right)^2}\)

= \(\dfrac{1-2x+x^2}{x\left(x+1\right)}.\dfrac{3x}{\left(x-1\right)^2}\)

= \(\dfrac{\left(x-1\right)^2.3x}{x\left(x+1\right)\left(x-1\right)^2}\)

= \(\dfrac{3}{x+1}\)

b, Để A đạt giá trị nguyên:

=> x + 1 thuộc Ư(3) = {-3;-1;1;3}

x+1 -3 -1 1 3
x -4 -2 0 2

Vậy x thuộc {-4;-2;0;2}.