Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
Bài 1:
a) Sửa đề \(x\left(x+y\right)-3y\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3y\right)\)
b) \(x^2+2019x-xy-2019y\)
\(=x\left(x+2019\right)-y\left(x+2019\right)\)
\(=\left(x+2019\right)\left(x-y\right)\)
c) \(x^2-9y^2-4x+4\)
\(=\left(x^2-4x+4\right)-9y^2\)
\(=\left(x-2\right)^2-\left(3y\right)^2\)
\(=\left(x-2-3y\right)\left(x-2+3y\right)\)
d) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
Bài 2:
a) \(\left(6x^3y^3-27xy^2\right):\left(3x^2y\right)-2xy^2\)
\(=6x^3y^3:3x^2y-27xy^2:3x^2y-2xy^2\)
\(=2xy^2-\dfrac{9y}{x}-2xy^2\)
\(=-\dfrac{9y}{x}\)
b) \(\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}+\dfrac{3x+2}{4-x^2}\)
\(=\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}-\dfrac{3x+2}{x^2-4}\)
\(=\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(1-2x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x+2\right)+\left(1-2x\right)\left(x-2\right)-3x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x+4+x-2-2x^2+4x-3x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-2x}{x+2}\)
Bài 3:
a) \(3x\left(2x-3\right)-x\left(6x+4\right)=7-12x\)
\(\Rightarrow6x^2-9x-6x^2-4x=7-12x\)
\(\Rightarrow-13x=7-12x\)
\(\Rightarrow-13x+12x-7=0\)
\(\Rightarrow-x-7=0\)
\(\Rightarrow-x=7\)
\(\Rightarrow x=-7\)
b) \(3\left(x-5\right)-2x^2+10x=0\)
\(\Rightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 1.
a) 5(4x - y)
= 20x - 5y
b) (x + 2)(x - 2) - (x - 3)(x + 1)
= x2 - 4 - [(x - 1) - 2][(x - 1) + 2)]
= x2 - 4 - [(x - 1)2 - 4]
= x2 - 4 - (x - 1)2 + 4
= x2 - x2 + 2x - 1
= 2x - 1
Bài 2.
a) x - y + 5x - 5y
= (x + 5x) - (y + 5y)
= 6x - 6y
= 6(x - y)
b) 3x2 - 6xy + 3y2 - 12z2
= 3(x2 - 2xy + y2 - 4z2)
= 3[(x2 - 2xy + y2) - 4z2]
= 3[(x - y)2 - 4z2]
= 3(x - y + z)(x - y - z)
Bài 3.
(x3- y3) : (x2 + xy + y2)
= (x - y)(x2 + xy + y2) : (x2 + xy + y2)
= x - y
Thay x = \(\dfrac{2}{3}\); y = \(\dfrac{1}{3}\) vào biểu thức đại số ta có:
\(\dfrac{2}{3}\)- \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
Vậy (x3- y3) : (x2 + xy + y2) = \(\dfrac{1}{3}\) tại x = \(\dfrac{2}{3}\) và y = \(\dfrac{1}{3}\)
a) \(A=\left(3x-2\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)\)
\(\Leftrightarrow A=\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)+\left(3x-2\right)^2\)
\(\Leftrightarrow A=\left[\left(x+1\right)-\left(3x-2\right)\right]^2\)
\(\Leftrightarrow A=\left(x+1-3x+2\right)^2\)
\(\Leftrightarrow A=\left(3-2x\right)^2\)
Thay \(x=\dfrac{3}{2}\) vào biểu thức A ta được:
\(\left(3-2.\dfrac{3}{2}\right)^2=\left(3-3\right)^2=0^2=0\)
Vậy giá trị của biểu thức A tại \(x=\dfrac{3}{2}\) là 0
b) \(B=\dfrac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-3x^2}\)
\(\Leftrightarrow B=\dfrac{x^2y\left(y-x\right)+xy^2\left(y-x\right)}{3\left(y^2-x^2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(y-x\right)\left(x^2y+xy^2\right)}{3\left(y-x\right)\left(y+x\right)}\)
\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(x+y\right)}{3\left(y-x\right)\left(y+x\right)}\)
\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(y+x\right)}{3\left(y-x\right)\left(y+x\right)}\)
\(\Leftrightarrow B=\dfrac{xy}{3}\)
Thay \(x=-3\) và \(y=\dfrac{1}{2}\) vào biểu thức B ta được:
\(\dfrac{\left(-3\right).\dfrac{1}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{-1}{2}\)
Vậy giá trị của biểu thức B tại \(x=-3\) và \(y=\dfrac{1}{2}\) là \(\dfrac{-1}{2}\)
c) \(C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)
\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{x^2-9}\)
\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\) MTC: \(\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)-\left(x-3\right)\left(1-x\right)+2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{\left(x^2+3x+x+3\right)-\left(x-x^2-3+3x\right)+\left(2x-2x^2\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{x^2+3x+x+3-x+x^2+3-3x+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow C=\dfrac{2}{x-3}\)
Thay \(x=5\) vào biểu thức C ta được:
\(\dfrac{2}{5-3}=\dfrac{2}{2}=1\)
Vậy giá trị của biểu thức C tại \(x=5\) là 1
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
Bài 1:
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(A=x^3-y^3+2y^3\)
\(A=x^3+y^3\)
Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:
\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)
Bài 2:
a. \(x\left(x^2+5\right)=x^3+5x\)
b. \(\left(3x-5\right)\left(2x+1\right)-\left(6x^2-5\right)\)
\(=6x^2-7x-5-6x^2+5=-7x\)
c. \(\left(2x+3\right)\left(2x-3\right)-\left(2x+1\right)^2\)
\(=4x^2-9-4x^2-4x-1=-4x-10=\)
d. \(\left(2x^4+x^3-3x^2+5x-2\right):\left(x^2-x+1\right)=2x^2+3x-2\)
Bài 3:
a. \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b. \(x^2-2x-y^2+1=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\)
Câu 1:
a,
\(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{1-2x+x^2}\)
= \(\left[\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right].\dfrac{3x}{\left(x-1\right)^2}\)
= \(\dfrac{1-2x+x^2}{x\left(x+1\right)}.\dfrac{3x}{\left(x-1\right)^2}\)
= \(\dfrac{\left(x-1\right)^2.3x}{x\left(x+1\right)\left(x-1\right)^2}\)
= \(\dfrac{3}{x+1}\)
b, Để A đạt giá trị nguyên:
=> x + 1 thuộc Ư(3) = {-3;-1;1;3}
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy x thuộc {-4;-2;0;2}.
1. a. \(\left(a+b\right)^2-4\)
\(=\left(a+b+2\right)\left(a+b-2\right)\)
b. \(4a^2+8ab-3a-6b\)
\(=4a\left(a+b\right)-3\left(a+b\right)\)
\(=\left(4a-3\right)\left(a+b\right)\)
c. \(a^2+b^2-c^2-2ab\)
\(=\left(a+b\right)^2-c^2\)
\(=\left(a+b+c\right)\left(a+b-c\right)\)
d. \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(5x-3\right)\left(x-y\right)\)
2. a. \(\dfrac{1-x}{x}+\dfrac{x}{1+x}\)
\(=\dfrac{1-x^2}{x\left(1+x\right)}+\dfrac{x^2}{x\left(1+x\right)}\)
\(=\dfrac{1-x^2+x^2}{x\left(1+x\right)}=\dfrac{1}{x\left(1+x\right)}\)
b. \(\dfrac{4}{x+2}+\dfrac{3}{2-x}+\dfrac{12}{x^2-4}\)
\(=\dfrac{4x-8}{\left(x+2\right)\left(x-2\right)}-\dfrac{3x+6}{\left(x+2\right)\left(x-2\right)}+\dfrac{12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)
3. \(\dfrac{x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)
\(=\dfrac{3x^3-x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{3x^3+x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{2x^2}{x\left(y-3x\right)\left(y+3x\right)}\)
\(=\dfrac{3x^3-x^2y-3x^3-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
\(=\dfrac{-xy+2x}{\left(3x+y\right)\left(3x-y\right)}\)
Thay x = 1 và y = 2 vào phân thức ta được:
\(=-\dfrac{2+2.2}{\left(3+2\right)\left(3-2\right)}=-\dfrac{6}{5}\)