K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

2,a A+4=4+(5x^2+6x+1)/x^2=(9x^2+6x+1)/x^2=(3x+1)^2/x^2 >/ 0 với mọi x

=>A >/ -4 =>minA=-4 , đẳng thức xảy ra khi x=-1/3 

2,b dễ c/m bđt : x^3+y^3 >/ (x+y)^3/4,khai triển hết ra còn 3(x-y)^2 >/ 0 ,đẳng thức xảy ra khi x=y

x^6+y^6=(x^2)^3+(y^2)^3 >/ (x^2+y^2)^3/4=1/4 ,đẳng thức xảy ra khi x=y=1/căn(2)

29 tháng 4 2017

2,c (a^3-3ab^2)^2=a^6-6a^4b^2+9a^2b^4=5^2=25

    (b^3-3a^2b)^2=b^6-6a^2b^4+9a^4b^2=10^2=100

Cộng theo vế đc a^6+b^6+3a^2b^4+3a^4b^2=(a^2+b^2)^3=25+100=125 =>S=a^2+b^2=5

22 tháng 6 2018

Đăng từng bài thôi nha bạn 

Bài 1 : Năm nay mới lên lớp 8 -_- 

Bài 2 : 

\(a)\) 

* Câu A : 

\(A=x^2+4x-7\)

\(A=\left(x^2+4x+4\right)-11\)

\(A=\left(x+2\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé ) 

Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)

* Câu B : 

\(B=2x^2-3x+5\)

\(2B=4x^2-6x+10\)

\(2B=\left(4x^2-6x+1\right)+9\)

\(2B=\left(2x-1\right)^2+9\ge9\)

\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)

* Câu C : 

\(C=x^4-3x^2+1\)

\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)

\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)

Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)

Chúc bạn học tốt ~ 

18 tháng 9 2016

\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)

\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)

\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)

\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)

19 tháng 9 2016

bài 4 í, có chắc đề đúng ko z

đề bài => 8x3 - y+ 8x+ y3 - 16x+ 16xy = 32

=> 16xy = 32

=> xy = 2

=>\(\left[\begin{array}{nghiempt}x=1=>y=2\\x=-1=>y=-2\\x=2=>y=1\\x=-2=>y=-1\end{array}\right.\)

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

6 tháng 9 2020

\(A=x^2+9x+25\)

\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)

\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)

Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)

b,\(B=4x^2-8x+\frac{21}{2}\)

\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)

\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)

Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)

c,\(C=-x^2+2x+\frac{5}{2}\)

\(=-\left(x^2-2x-\frac{5}{2}\right)\)

\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)

\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)

Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)

6 tháng 9 2020

Bài 1.

A = x2 + 9x + 25

= ( x2 + 9x + 81/4 ) + 19/4

= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x

Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2

=> MinA = 19/4 <=> x = -9/2

B = 4x2 - 8x + 21/2

= 4( x2 - 2x + 1 ) + 13/2

= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinB = 13/2 <=> x = 1

C = -x2 + 2x + 5/2

= -( x2 - 2x + 1 ) + 7/2

= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxC = 7/2 <=> x = 1

D = -9x2 - 12x + 27/2

= -9( x2 + 4/3x + 4/9 ) + 35/2

= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x

Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3

=> MaxD = 35/2 <=> x = -2/3

Bài 2.

a) 4x2 + 9y2 + 12x + 12y + 13 = 0

<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0

<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)

=> x = -3/2 ; y = -2/3

b) 16x2 + 4y2 - 8x + 12y + 10 = 0

<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0

<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)

\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)

=> x = 1/4 ; y = -3/2

1 tháng 4 2018

1. áp dụng BĐT cô-si:

\(\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}\ge2\sqrt{\frac{c+ab}{a+b}+\frac{a+b}{\frac{8}{9}}}=2\sqrt{\frac{c+ab}{\frac{8}{9}}}\)

Tương tự: \(\frac{a+bc}{b+c}+\frac{b+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+bc}{\frac{8}{9}}}\) và \(\frac{a+ac}{a+c}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt[]{\frac{b+ac}{\frac{8}{9}}}\)

cộng vế theo vế :M= \(\frac{c+ab}{a+b}+\frac{a+bc}{b+c}+\frac{b+ac}{a+c}+\frac{a+b}{\frac{8}{9}}+\frac{b+c}{\frac{8}{9}}+\frac{a+c}{\frac{8}{9}}\ge2\sqrt{\frac{a+b+c+ab+bc+ac}{\frac{8}{9}}}\)(1)

mà a+b+c=1 và \(ab+bc+ac\le\frac{1}{3}\) ( tự chứng minh từ \(a^2+b^2+c^2\ge ab+bc+ac\) =>.....)

thay vào(1) => đpcm

1 tháng 4 2018

cái chỗ \(2\sqrt{\frac{c+ab}{a+b}.\frac{a+b}{\frac{8}{9}}}\) là nhân chứ không phải cộng nha