Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-2x^2+1=\left(x^2-1\right)^2=\left(x-1\right)^2\left(x+1\right)^2\)
b) \(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
c) \(2x^3-x^2-8x+4\)
\(=x^2\left(2x-1\right)-4\left(2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\)
d) \(x\left(x-y\right)^2+y\left(x-y\right)^2-xy+x^2\)
\(=\left(x+y\right)\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2+x\right)\)
e) \(2x^2-5x+2\)
\(=\left(2x^2-x\right)-\left(4x-2\right)\)
\(=x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
Ta có : x3 - 3x2 + x - 3
= x2(x - 3) + (x - 3)
= (x - 3) (x2 + 1)
Nên : (x3 - 3x2 + x - 3) : (x - 3)
= (x - 3) (x2 + 1) : (x - 3)
= (x2 + 1)
* Dạng toán về phép chia đa thức
Bài 9. Làm phép chia:
a. \(3x^3y^2:x^2=3xy^2\)
b.\(\left(x^5+4x^3-6x^2\right):4x^2=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
c. \(\left(x^3-8\right):\left(x^2+2x+4\right)=\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)=x-2\)
d. \(\left(3x^2-6x\right):\left(2-x\right)=-3x\left(2-x\right):\left(2-x\right)=-3x^2\)
e. \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)
\(=\left[\left(x^3-1\right)+\left(2x^2-2x\right)\right]:\left(x^2+3x+1\right)\)
\(=\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]:\left(x^2+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+2x\right):\left(x^2+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+3x+1\right):\left(x^2+3x+1\right)\)
\(=x-1\)
Bài 10: Làm tính chia
( Bài này có thể đặt phép chia hoặc phân tích thành nhân tử của Số bị chia sao cho có một nhân tử chia hết cho số chia)
C1 : Đặt phép tính chia
C2 : Đặt nhân tử chung ,tùy vào từng câu
1. \(\left(x^3+3x^2+x-3\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)
\(=x^2+1\)
2.( \(2x^4-5x^2+x^3-3-3x\) ) : \(x^2-3\)
\(=\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)
2x^4 + x^3 - 5x^2 - 3x - 3 x^2 - 3 2x^2 + x + 1 2x^4 -6x^2 x^3+ x^2 - 3x- 3 x^3 - 3x x^2 -3 x^2 - 3 0
3. (x – y – z)5 : (x – y – z)3
\(=\left(x-y-z\right)^{5-3}\)
\(=\left(x-y-z\right)^2\)
\(=x^2+y^2+z^2-2xy-2xz+2yz\)
4. \(\left(x^2+2x+x^2-4\right):\left(x+2\right)\)
\(=\left[x\left(x+2\right)+\left(x-2\right)\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x+2\right)\left(x+x-2\right):\left(x+2\right)\)
\(=2x-2\)
5.( \(2x^3+5x^2-2x+3\) ) : \(\left(2x^2-x+1\right)\)
2x^3 + 5x^2 - 2x + 3 2x^2 - x + 1 x + 3 2x^3 - x^2 + x - 6x^2 - 3x + 3 6x^2 - 3x + 3 - 0
\(6.\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
2x^3 - 5x^2 + 6x - 15 2x - 5 x^2 + 3 2x^3 - 5x^2 - 6x - 15 6x - 15 - 0
P/S : Tối mk lm tiếp nha bn , bh mk có việc bận
Bài 11.
1. Do đa thức chia có bậc là 4 , đa thức bị chia có bậc 2 nên thương có bậc 2
Đặt : x4 - x3 + 6x2 - x + n = ( x2 - x + 5)( x2 + ax + b)
x4 - x3 + 6x2 - x + n= x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax+5b
x4 - x3 + 6x2 - x + n= x4 - x3( a + 1) + x2( b - a + 5) - x( b - 5a) + 5b
Đồng nhất hệ số , ta có :
* a + 1 = 1 => a = 0
* b - a + 5 = 6 => b = 6 - 5 + a = 1
* b - 5a = 1
* 5b = n => n = 5.1 = 5
Vậy , để............thì n = 5
2. Bài này không phức tạp nên chia bt nha , nhưng mk làm cách đồng nhất nhé ( máy tính nhà mk giống bạn Giang bị lỗi phần chia)
Do : đa thức chia bậc 3 , đa thức bị chia bậc 1 nên đa thức thương có bậc 2
Đặt : 3x3 + 10x2 - 5 + n = ( 3x + 1)( x2 + ax + b)
3x3 + 10x2 - 5 + n = 3x3 + 3ax2 + 3bx + x2 + ax + b
3x3 + 10x2 - 5 + n = 3x3 + x2( 3a + 1) + x( 3b + a) + b
Đồng nhất hệ số , ta có :
* 3a + 1 = 10 => 3a = 9 => a = 3
* 3b + a = 0 => 3b = -3 => b = -1
* b = n - 5 => n = b + 5 = -1 + 5 = 4
Vậy, để........thì : n = 4
3. 2n^2+n-7 n-2 2n - 2n^2-4n 5n-7 +5 - 5n-10 3
Để,.......thì :
n - 2 thuộc Ư( 3)
Lập bảng giá trị , ta có :
n-2 n 1 3 -1 -3 3 5 1 -1
Vậy,....