Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
a) 2x (x-5) -(x2-10x +25)=0
\(\Leftrightarrow\)2x(x-5)-(x-5)2=0
\(\Leftrightarrow\)(x-5)(2x-x+5)=0
\(\Leftrightarrow\)(x-5)(x+5)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
b) x2 - 9 +3x(x+3) = 0
\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0
\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0
\(\Leftrightarrow\)(x+3)(x-3+3x)=0
\(\Leftrightarrow\)(x+3)(4x-3)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)
c) x3 - 16x = 0
\(\Leftrightarrow\)x(x2-16)=0
\(\Leftrightarrow\)x(x-4)(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) (2x+3)(x-2) - (x2 -4x+4) = 0
\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0
\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0
\(\Leftrightarrow\)(x-2)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
e) 9x2 -(x2 -2x +1)=0
\(\Leftrightarrow\)(3x)2-(x-1)2=0
\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0
\(\Leftrightarrow\)(2x+1)(4x-1)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
f)x3-4x2 -9x +36 = 0
\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0
\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0
\(\Leftrightarrow\)(x-4)(x2-9)=0
\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
g) 3x - 6 = (x-1).(x-2)
\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)
\(\Leftrightarrow\)x-1=3
\(\Leftrightarrow\)x=4
i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)
k) x2 -1 = (x-1).(2x+3)
\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)
\(\Leftrightarrow\)x+1=2x+3
\(\Leftrightarrow\)x-2x=3-1
\(\Leftrightarrow\)-x=2
\(\Leftrightarrow\)x=-2
l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6
\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6
\(\Leftrightarrow\)6x-8=6
\(\Leftrightarrow\)6x=14
\(\Leftrightarrow\)x=\(\frac{7}{3}\)
a) \(\left(y-1\right)^2=9\)
\(\Rightarrow\left(y-1\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow x-1=3\Rightarrow x=4\)
\(\Rightarrow x-1=-3\Rightarrow x=-2\)
Vậy: \(x=4\) hoặc \(-2\)
a) \(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)
b) \(3x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
c) \(4x\left(x+3\right)-x^2+9=0\)
\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)
f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)
g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)
a) 4x3 - 9x = 0
<=> x( 4x2 - 9 ) = 0
<=> x( 2x - 3 )( 2x + 3 ) = 0
<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0
<=> x = 0 hoặc x = ±3/2
b) 3x( x - 2 ) - 5x + 10 = 0
<=> 3x( x - 2 ) - 5( x - 2 ) = 0
<=> ( x - 2 )( 3x - 5 ) = 0
<=> x - 2 = 0 hoặc 3x - 5 = 0
<=> x = 2 hoặc x = 5/3
c) 4x( x + 3 ) - x2 + 9 = 0
<=> 4x( x + 3 ) - ( x2 - 9 ) = 0
<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0
<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0
<=> ( x + 3 )( 4x - x + 3 ) = 0
<=> ( x + 3 )( 3x + 3 ) = 0
<=> x + 3 = 0 hoặc 3x + 3 = 0
<=> x = -3 hoặc x= -1
d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )
<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0
<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0
<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0
<=> ( x - 4 ).3x = 0
<=> x - 4 = 0 hoặc 3x = 0
<=> x = 4 hoặc x = 0
e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )
<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0
<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0
<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0
<=> ( 4x - 5 )( 2x + 4 ) = 0
<=> 4x - 5 = 0 hoặc 2x + 4 = 0
<=> x = 5/4 hoặc x = -2
f) ( x + 1/5 )2 = 64/9
<=> ( x + 1/5 )2 = ( ±8/3 )2
<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3
<=> x = 37/15 hoặc x = -43/15
g) 9( x + 2 )2 = ( x + 3 )2
<=> 32( x + 2 )2 - ( x + 3 )2 = 0
<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0
<=> ( 3x + 6 )2 - ( x + 3 )2 = 0
<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0
<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0
<=> ( 2x + 3 )( 4x + 9 ) = 0
<=> 2x + 3 = 0 hoặc 4x + 9 = 0
<=> x = -3/2 hoặc x = -9/4
a) \(x^3-4x^2-9x+36=0\Leftrightarrow x^3-7x^2+12x+3x^2-21x+36=0\) \(x\left(x^2-7x+12\right)+3\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x-4x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\Leftrightarrow\left(x+3\right)\left(x-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x-4=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=4\\x=3\end{matrix}\right.\) vậy \(x=-3;x=4;x=3\)
b) \(5x^2-4\left(x^2-2x+1\right)-5=0\) \(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\Leftrightarrow x^2-x+9x-9=0\)
\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\) vậy \(x=-9;x=1\)
c) đề có sai o bn
d) \(x^3-3x+2=0\Leftrightarrow x^3+x^2-2x-x^2-x+2=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)-\left(x^2+x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x\left(x-1\right)+2\left(x-1\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-2\\x=1\end{matrix}\right.\)
vậy \(x=1;x=-2\)
1. \(x^3-4x^2-9x+36=0\)
\(\Rightarrow x^2.\left(x-4\right)-9\left(x-4\right)=0\)
\(\Rightarrow\left(x^2-9\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\Rightarrow x\in\left\{3;-3\right\}\\x-4=0\Rightarrow x=4\end{matrix}\right.\)
Vậy ..........
2. \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Rightarrow5x^2-4\left(x^2-1\right)-5=0\)
\(\Rightarrow5x^2-4x^2+4-5=0\)
\(\Rightarrow x^2-1=0\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
Vậy .......
3. \(x^3-3x+2=0\)
\(\Rightarrow x^3-4x+x+2=0\)
\(\Rightarrow x.\left(x^2-4\right)+x+2=0\)
\(\Rightarrow x.\left(x-2\right).\left(x+2\right)+x+2=0\)
\(\Rightarrow\left(x+2\right).\left(x^2-2x+1\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy .......
a, \(x^3-5x=0\)
\(\Rightarrow x\left(x^2-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
b, \(4x^3-9x=0\)
\(\Rightarrow x\left(4x^2-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)
c, \(2x^3-72x=0\)
\(\Rightarrow2x\left(x^2-36\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm6\end{matrix}\right.\)
d, \(4\left(3x+1\right)^2+16=25\)
\(\Rightarrow4\left(3x+1\right)^2-9=0\)
\(\Rightarrow\left[2\left(3x+1\right)-3\right]\left[2\left(3x+1\right)+3\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}2\left(3x+1\right)-3=0\\2\left(3x+1\right)+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x+1=\dfrac{3}{2}\\3x+1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\)
a, \(x^2-5x=0\)
\(\Rightarrow x\left(x^2-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
b, \(4x^3-9x=0\)
\(\Rightarrow x\left(4x^2-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)
c, \(2x^3-72x=0\)
\(\Rightarrow2x\left(x^2-36\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)