Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{9}{196}.\dfrac{1-3-5-7-...-49}{89}\)
Đặt \(B=1-3-5-7-..-49\)
\(=1-\left(3+5+7+...+49\right)\)
\(=1-\left\{\left(49+3\right).\left[\left(49-3\right):2+1\right]:2\right\}\)
\(=1-624\)
\(=-623\)
\(\Rightarrow\dfrac{9}{196}.\left(\dfrac{-623}{89}\right)=-\dfrac{9}{28}\)
Vậy: \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}=-\dfrac{9}{28}\)
Xét \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)
=\(\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right)\)
=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\)
=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\)
=\(\dfrac{1}{5}.\dfrac{45}{196}\)
=\(\dfrac{9}{196}\)
Xét \(\dfrac{1-3-5-7-..-49}{89}\)
=\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)
CT tính sl số hạng (số cuối - số đầu ):2+1
số lượng số hạn của dãy 3+5+7+...+49 là (49-3):2+1=24
Áp dụng CT tính tổng số hạng dãy số cách đều Tổng = [ (số đầu + số cuối) x Số lượng số hạng ] : 2
=> tổng = [(3+49).24]:2=624
=>\(\dfrac{1-624}{89}\)
=\(\dfrac{-623}{89}\)
=-7
từ đó ta có \(\dfrac{9}{196}.\left(-7\right)=\dfrac{-9}{28}\)
=\(\dfrac{1}{5}\).(\(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+....+\dfrac{5}{44.49}\)).\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)
=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\).\(\dfrac{1-624}{89}\)
=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\).(-7)
=\(\dfrac{1}{5}\).\(\dfrac{45}{196}\).(-7)=\(\dfrac{-9}{28}\)
\(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+..+\dfrac{1}{44.49}\right)\left(\dfrac{1-3-5-7-..-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+..+\dfrac{5}{44.49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
\(A=\dfrac{9}{196}\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
Ta đặt: \(P=1-3-5-7-...-49\\ =1-\left(3+5+7+..+49\right)\\ =1-624\\ =-623\\ \Rightarrow\dfrac{9}{196}.-\dfrac{623}{89}=-\dfrac{9}{28}.\)
Ta có: �=(14⋅9+19⋅14+114⋅19+...+144⋅49)⋅1−3−5−7−...−4989A=(4⋅91+9⋅141+14⋅191+...+44⋅491)⋅891−3−5−7−...−49
⇔�=15⋅(54⋅9+59⋅14+514⋅19+...+544⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅95+9⋅145+14⋅195+...+44⋅495)⋅891−3−5−7−...−49
⇔�=15⋅(14−19+19−114+114−119+...+144−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−91+91−141+141−191+...+441−491)⋅891−3−5−7−...−49
⇔�=15⋅(14−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−491)⋅891−3−5−7−...−49
⇔�=15⋅(49−44⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅4949−4)⋅891−3−5−7−...−49
⇔�=15⋅45196⋅1−3−5−7−...−4989⇔A=51⋅19645⋅891−3−5−7−...−49
⇔�=9196⋅1−3−5−7−...−4989⇔A=1969⋅891−3−5−7−...−49
⇔�=9196⋅−62389=−928⇔A=1969⋅89−623=−289
\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)
\(=\) \(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\)
\(=\) \(\dfrac{1}{4}-\dfrac{1}{49}\)
\(=\) \(\dfrac{49}{196}-\dfrac{4}{196}\)
\(=\) \(\dfrac{45}{196}\)
Biểu thức ban đầu không thỏa công thức nên không giải như vậy đc => sai.
Bài 1:
\(\frac{1}{8}.16^n=2^n\)
\(\Rightarrow\frac{16^n}{8}=2^n\)
\(\Rightarrow\frac{\left(2^4\right)^n}{2^3}=2^n\)
\(\Rightarrow\frac{2^{4n}}{2^3}=2^n\)
\(\Rightarrow2^{4n-3}=2^n\)
\(\Rightarrow4n-3=n\)
\(\Rightarrow4n-n=3\)
\(\Rightarrow3n=3\)
\(\Rightarrow n=3:3\)
\(\Rightarrow n=1\left(TM\right).\)
Vậy \(n=1.\)
Bài 3:
a) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=2-3\\2x+x=-2-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\left(-1\right):1\\x=\left(-5\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{5}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;-\frac{5}{3}\right\}.\)
Chúc bạn học tốt!
Bài 3:
b) \(A=\left|x-2006\right|+\left|2007-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left(x-2006\right).\left(2007-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2006\\x\le2007\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2006\\x\ge2007\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2006\le x\le2007\\x\in\varnothing\end{matrix}\right.\)
Vậy \(MIN_A=1\) khi \(2006\le x\le2007.\)
Chúc bạn học tốt!
Bài 1 :
Sửa để : \(N=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+....+\dfrac{1}{44.49}\right)\cdot\dfrac{1-3-5-7-..-49}{89}\)
\(N=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-\left(3+5+7+..+49\right)}{89}\)
\(N=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-624}{89}\)
\(N=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{-623}{89}\)
\(\Rightarrow N=\dfrac{9}{196}\cdot-7=\dfrac{-9}{28}\)
Ta có: \(A=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{5}{14\cdot19}+...+\dfrac{5}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{49-4}{4\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{-623}{89}=-\dfrac{9}{28}\)