K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

a,Ta có : \(\frac{x}{x}=\frac{4y}{7}\) => \(1=\frac{4y}{7}\)=> \(2x=\frac{4y}{7}\)=> 14x = 4y => 7x = 2y => \(\frac{x}{2}=\frac{y}{7}\)=> \(\frac{2x}{4}=\frac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{4}=\frac{y}{7}=\frac{2x-y}{4-7}=\frac{3}{-3}=-1\)

=> \(\hept{\begin{cases}\frac{2x}{4}=-1\\\frac{y}{7}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-4\\y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}\)

b, \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{36}{7}\)

=> Từ đó suy ra x,y không thỏa mãn điều kiện

13 tháng 8 2019

a. \(\frac{x}{x}=\frac{4y}{7}\)=> 4y = 7 => y = \(\frac{7}{4}\)

2x - y = 3 => 2x = \(\frac{19}{4}\) => x = \(\frac{19}{8}\)

b. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4}=\frac{y}{3}=\frac{x^2-y^2}{4^2-3^2}=\frac{36}{7}\)

=> x,y \(\in\varnothing\)

30 tháng 8 2019

a. x^2.y^2=162

ta có \(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\)=>\(\frac{x^2}{4}=\frac{y^2}{1}=\frac{z^2}{9}\)

=>\(\frac{x^2}{4}.\frac{y^2}{1}=\frac{z^4}{81}\)còn lại do đề sai :))

30 tháng 8 2019

b.\(\frac{2x}{3}=\frac{3y}{4}=\frac{z}{5}\)

=>\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{5}=\frac{x-y+z}{....}=\frac{26}{....}\)nhân phân phối là xong :))

23 tháng 8 2019

Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)

=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)

=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)

=> 10x2  + 2x - 50x - 10 = 10x2 - 2x - 25x + 5

=> 10x2 - 48x - 10x2 + 27x = 5 + 10

=> -21x = 15

=> x = 15 : (-21) = -5/7

Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)

=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)

=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)

=> \(\frac{5}{4}=\frac{y}{3}\)

=> 4y = 15

=> y = 15/4

Vậy ...

Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\)  => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

20 tháng 12 2016

a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)

+) \(\frac{x}{-2}=-12\Rightarrow x=24\)

+) \(\frac{y}{1}=-12\Rightarrow y=-12\)

Vậy cặp số \(\left(x;y\right)\)\(\left(24;-12\right)\)

b) Giải:

Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)

Đặt \(\frac{x}{7}=\frac{y}{10}=k\)

\(\Rightarrow x=7k;y=10k\)

\(xy=36\)

\(7k10k=36\)

\(\Rightarrow70k^2=36\)

\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )

c) Giải:

Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)

+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)

+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)

Vậy cặp số \(\left(x;y\right)\)\(\left(\frac{-7}{8};\frac{7}{4}\right)\)

1 tháng 8 2018

tui lớp 5 giải dc phần a có cần tui giúp ko

30 tháng 9 2016

Dể nhưng làm xong chắc chết =))

2 tháng 10 2016

z thì bạn làm thử coai