Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) | 2,5 - x | = 1,3
\(\Rightarrow\orbr{\begin{cases}2,5-x=1,3\\2,5-x=-1,3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2,5-1,3\\x=2,5-\left(-1,3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,2\\x=3,8\end{cases}}\)
còn lại tương tự
Giải:
a) \(\left(\dfrac{1}{x}-3\right)\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\\dfrac{2}{3}x+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3\\\dfrac{2}{3}x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy ...
b) \(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Leftrightarrow\left|2x\right|-2,5=7,5\)
\(\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vây ...
c) \(x-7\ge0\Leftrightarrow x\ge7\)
\(\left|1-3x\right|=x-7\)
\(\Leftrightarrow\left[{}\begin{matrix}1-3x=x-7\\1-3x=7-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x-x=-7-1\\-3x+x=7-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4x=-8\\-2x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ...
1)
a) \(|x-3,5|=7,5\)
\(\Rightarrow x-3,5=7,5\)
hay \(x-3,5=-7,5\)
TH1 : \(x-3,5=7,5\Rightarrow x=7,5+3,5=11\)
TH2 : \(x-3,5=-7,5\Rightarrow x=-7,5+3,5=-4\)
b) \(|x+\dfrac{4}{5}|-\dfrac{1}{2}=0\)
\(\Rightarrow\left(x+\dfrac{4}{5}\right)-\dfrac{1}{2}=0\) (chỉ có 1 TH vì số 0 ko phải dương or âm)
\(\left(x+\dfrac{4}{5}\right)=0+\dfrac{1}{2}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{4}{5}=\dfrac{5-8}{10}=\dfrac{-3}{10}\)
c) \(3,6-|x-0,4|=0\)
\(\Rightarrow3,6-\left(x-0,4\right)=0\) ( giải thích giống câu b )
\(\Rightarrow-\left(x-0,4\right)=0-3,6\)
\(\Rightarrow-\left(x-0,4\right)=-3,6\)
\(\Rightarrow-x+0,4=-3,6\) ( Phá dấu )
\(\Rightarrow-x=-3,6-0,4=-3,6+\left(-0,4\right)=-4\)
\(\Rightarrow x=4\)
d) \(-\dfrac{5}{12}:|\dfrac{-5}{6}:x|=\dfrac{-5}{9}\)
\(\Rightarrow-\dfrac{5}{12}:|\dfrac{-5}{6}:x|=\dfrac{-5}{9}\)
hay \(\Rightarrow-\dfrac{5}{12}:|\dfrac{-5}{6}:x|=\dfrac{5}{9}\)
TH1 : \(-\dfrac{5}{12}:\left(-\dfrac{5}{6}:x\right)=\dfrac{-5}{9}\Rightarrow\left(-\dfrac{5}{6}:x\right)=-\dfrac{5}{12}:\left(-\dfrac{5}{9}\right)\)
\(\Rightarrow\left(-\dfrac{5}{6}:x\right)=\dfrac{5}{12}.\dfrac{9}{5}=\dfrac{9}{12}=\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{5}{6}:\dfrac{3}{4}=-\dfrac{5.4}{6.3}=-\dfrac{5.2}{3.3}=-\dfrac{10}{9}\)
TH2 : \(\Rightarrow-\dfrac{5}{12}:\left(-\dfrac{5}{6}:x\right)=\dfrac{5}{9}\)
\(\Rightarrow\)\(\left(-\dfrac{5}{6}:x\right)=-\dfrac{5}{12}:\dfrac{5}{9}=-\dfrac{5.9}{12.5}=-\dfrac{9}{12}=-\dfrac{3}{4}\)
\(\Rightarrow x=-\dfrac{5}{6}:\left(-\dfrac{3}{4}\right)=\dfrac{5}{6}.\dfrac{4}{3}=\dfrac{10}{9}\)
Vậy x = ....
e)
Vì \(|x-3,5|\ge0;|4,5-x|\ge0\) với mọi x
Do đó : \(|x-3,5|+|4,5-x|=0\)
\(\Rightarrow|x-3,5|=0;|4,5-x|=0\)
\(\Rightarrow x-3,5=0\) và \(4,5-x=0\)
\(\Rightarrow x=0+3,5=3,5\) và \(-x=0+4,5=4,5\Rightarrow x=-4,5\)
( không đồng thời xảy ra)
\(\Rightarrow\) Không tồn tại x thuộc Q để \(|x-3,5|+|4,5-x|=0\)
\(\left|2,5-x\right|=7,5\)
\(\orbr{\begin{cases}2,5-x=7,5\\2,5-x=-7,5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2,5-7,5\\x=2,5+7,5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=10\end{cases}}\)
\(Vayx\in\left\{-5;10\right\}\)
\(1,6-\left|x-0,2\right|=0\)
\(\left|x-0,2\right|=1,6\)
\(\orbr{\begin{cases}x-0,2=1,6\\x-0,2=-1,6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,6+0,2\\x=-1,6+0,2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1,8\\x=-1,4\end{cases}}\)
a/ \(\left|2,5-x\right|=1,3\)
\(\Leftrightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
Vậy .
b/ \(1,6-\left|x-0,2\right|=0\)
\(\Leftrightarrow\left|x-0,2\right|=1,6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)
Vậy ....
c/ \(\left|x-1,5\right|+\left|2,5-x\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) (loại)
Vậy ..........
\(a)\left|2,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
Vậy .....
\(b)1,6-\left|x-0,2\right|=0\)
\(\Rightarrow\left|x-0,2\right|=1,6-0\)
\(\Rightarrow\left|x-0,2\right|=0\)
\(\Rightarrow x-0,2=0\)
\(\Rightarrow x=0,2\)
Vậy .......
\(c)\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Vậy .....
Chúc bạn học tốt!