K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

a,

Ta có: 

2225 = ( 23 )75 = 875

3151 > 3150 = ( 32 ) 75 = 975 

Vì 8 < 9 \(\Rightarrow\) 875 < 975

\(\Rightarrow\)2225 < 3150 < 3151

Vậy 2225 < 3151

b,

Vì n là số tự nhiên nên n chỉ có thể là số chẵn hoặc  n là số lẻ

- Nếu n là chẵn \(\Rightarrow\)3n + 2 là chẵn 

\(\Rightarrow3n+2⋮2\)

\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với  n chẵn (1)

- Nếu n lẻ \(\Rightarrow\)n+1 là chẵn 

\(\Rightarrow\) \(n+1⋮2\)

\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với n lẻ (2)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\Rightarrow\left(n+1\right).\left(3n+2\right)⋮2\)với mọi số tự nhiên n

Vậy \(A=\left(n+1\right).\left(3n+2\right)⋮2\)

22 tháng 4 2017

a)

Ta có : 3151 > 3150 = ( 32 ) 75 = 975

Mà 2225 = ( 23 ) 75 = 875

Vì 975 > 875 nên 2225 < 3150 < 3151

=> 2225 < 3151

b) ta xét 2 trường hợp : n = 2k hoặc n = 2k + 1 ( k \(\in\)Z )

TH1 : n = 2k + 1

A = ( n + 1 ) ( 3n + 2 ) 

=> A = ( 2k + 1 +1 ) . [ 3 . ( 2k + 1 ) + 2 ]

=> A = ( 2k + 2 ) . ( 6k + 4 )

=> A = 2 ( k + 1 ) . 2 ( 3k + 2 ) \(⋮\)2

TH2 : n = 2k 

A = ( n + 1 ) ( 3n + 2 )

=> A = ( 2k + 1 ) ( 3 . 2k + 2 )

=> A = ( 2k + 1 ) . ( 6k + 2 )

=> A = ( 2k + 1 ) . 2 . ( 3k + 1 ) \(⋮\)2

=> A \(⋮\)2

6 tháng 8 2016

2225 = (23)75 = 875

3151 > 3150 = (32)75 = 975

=> 3151 > 975 > 875

=> 3151 > 2225

6 tháng 8 2016

4n - 5 chia hết cho 2n - 1

=> 4n - 2 - 3 chia hết cho 2n - 1

=> 2.(2n - 1) - 3 chia hết cho 2n - 1

Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1

Mà n thuộc N => 2n - 1 > hoặc = -1

=> 2n - 1 thuộc {-1 ; 1 ; 3}

=> 2n thuộc {0 ; 2 ; 4}

=> n thuộc {0 ; 1 ; 2}

29 tháng 11 2015

a)n+5 chia hết cho n-1

=>n-1+6 chia hết cho n-1 

=> 6 chia hết cho n-1 hay n-1EƯ(6)={1;2;3;6}

=>nE{2;3;4;7}

b)3n+1 chia hết cho n+1

3n+3-2 chia hết cho n+1

3(n+1)-2 chia hết cho n+1

=>2 chia hết cho n+1 hay n+1EƯ(2)={1;2}

nE{0;1}

12 tháng 11 2017

a,5mũ 36=(5mũ3)mũ12=125 mũ12

11^24=(11^2)12=121^12

vì 121<125 nên 5^36>11^24

14 tháng 11 2017

cảm ơn nha

13 tháng 5 2019

\(n^3-13n=n\left(n^2-1\right)-12n.\)

                   \(=n\left(n-1\right)\left(n-2\right)-12n\)

Vậy chia hết cho 6 vì 

      n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6

     12n chia hết cho 6

6 tháng 4 2018

A=(n+1)(n+2+2n)=(n+1)(n+2)+2n(n+1)

Vì (n+1)(n+2) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 

2n(n+1) chia hết cho 2 

=> A chia hết cho 2 đpcm

6 tháng 4 2018

bài khác nữa nhé bạn 

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

17 tháng 8 2018

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

17 tháng 8 2018

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự