Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)
\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)
Áp dụng quy tắc khai phương một thương, hãy tính :
a) 9169−−−−√ = \(\sqrt{\dfrac{3^2}{13^2}}\) = \(\left|\dfrac{3}{13}\right|\) = \(\dfrac{3}{13}\)
b) 25144−−−−√ = \(\sqrt{\dfrac{5^2}{12^2}}\) = \(\left|\dfrac{5}{12}\right|\) = \(\dfrac{5}{12}\)
c) 1916−−−−√ = \(\sqrt{\dfrac{25}{16}}\) = \(\sqrt{\dfrac{5^2}{4^2}}\) = \(\left|\dfrac{5}{4}\right|\) = \(\dfrac{5}{4}\)
d) 2781−−−−√ = \(\sqrt{\dfrac{169}{81}}\) = \(\sqrt{\dfrac{13^2}{9^2}}\) = \(\left|\dfrac{13}{9}\right|\) = \(\dfrac{13}{9}\)
a) \(\sqrt{10}.\sqrt{40}\)
=\(\sqrt{10.40}\)
=\(\sqrt{400}\)
=20
b) \(\sqrt{5.}\sqrt{45}\)
=\(\sqrt{5.45}\)
=\(\sqrt{225}\)
=\(\sqrt{15}\)
c) \(\sqrt{52.}\sqrt{13}\)
=\(\sqrt{52.13}\)
=\(\sqrt{676}\)
=26
d)\(\sqrt{2.}\sqrt{162}\)
=\(\sqrt{2.162}\)
=\(\sqrt{324}\)
=18
Ta thấy các số trong căn bậc hai đều lớn hơn 0, áp dụng \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
a) \(\sqrt{7}\cdot\sqrt{63}=\sqrt{7\cdot63}=21\)
b) \(\sqrt{2,5}\cdot\sqrt{30}\cdot\sqrt{48}=\sqrt{2,5\cdot30\cdot48}=60\)
c) \(\sqrt{0,4}\cdot\sqrt{6,4}=\sqrt{0,4\cdot6,4}=1,6\)
d) \(\sqrt{2,7}\cdot\sqrt{5}\cdot\sqrt{1,5}=\sqrt{2,7\cdot5\cdot1,5}=4,5\)
a. \(\sqrt{7}.\sqrt{63}=\sqrt{7.63}=\sqrt{441}=21\)
b.\(\sqrt{2,5}.\sqrt{30}.\sqrt{48}=\sqrt{2,5.30.48}=\sqrt{3600}=60\)
c.\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{2,56}=1,6\)
d.\(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{2,7.5.1,5}=\sqrt{20,25}=4,5\)
Bài 1:
a: \(=\sqrt{225}=15\)
b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)
c: \(=\sqrt{121\cdot36}=11\cdot6=66\)
d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)
g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)
Bài 2:
a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)
b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)
a)\(\sqrt{10}\cdot\sqrt{40}=\sqrt{10\cdot40}=\sqrt{400}=20\)
b) \(\sqrt{2}\cdot\sqrt{162}=\sqrt{2\cdot162}=\sqrt{2\cdot2\cdot81}=\sqrt{4}\cdot\sqrt{81}=2\cdot9=18\)
a) \(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{\frac{4}{10}.\frac{64}{10}}=\sqrt{\frac{\left(2.8\right)^2}{10^2}}=\frac{16}{10}=\frac{8}{5}\)
b) \(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{\frac{27}{10}.5.\frac{15}{10}}=\sqrt{\frac{3^3.5^2.3}{10^2}}=\sqrt{\frac{\left(3^2.5\right)^2}{10^2}}=\frac{45}{10}=\frac{9}{2}\)
câu này dễ mà
chỉ cần nhân vào là xong
kiến thức đầu lớp 9 khá dễ đấy
tự mình làm đi nha bạn
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
Áp dụng quy tắc chia hai căn bậc hai, hãy tính :
a) 2300−−−−√23−−√ = \(\sqrt{\dfrac{2300}{23}}\) = \(\sqrt{100}\) = 10
b) 12,5−−−−√0,5−−−√ = \(\sqrt{\dfrac{12,5}{0,5}}\) = \(\sqrt{25}\) = 5
c) 192−−−√12−−√ = \(\sqrt{\dfrac{192}{12}}\) = \(\sqrt{16}\) = 4
d) 6–√150−−−√ = \(\sqrt{\dfrac{6}{150}}\) = \(\sqrt{\dfrac{1}{25}}\) = \(\dfrac{1}{5}\)