\(\ge0\). Chứng minh các BĐT sau

a.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng theo vế 2 bđt trên ta có:

\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu = khi a=b=c

b)Áp dụng Bđt Cô-si ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)

Cộng theo vế 3 bđt trên ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Đấu = khí a=b=c

 

10 tháng 11 2016

bn sử đấu = khí dấu = khi nhé

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

NV
9 tháng 2 2020

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

a/ Từ BĐT ban đầu ta có:

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (đpcm)

NV
9 tháng 2 2020

b/ Chia 2 vế của BĐT ở câu a cho 9 ta được:

\(\frac{a^2+b^2+c^2}{3}\ge\frac{\left(a+b+c\right)^2}{9}=\left(\frac{a+b+c}{3}\right)^2\) (đpcm)

c/ Cộng 2 vế của BĐT ban đầu với \(2ab+2bc+2ca\) ta được:

\(a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

d/ Áp dụng BĐT ban đầu cho các số \(a^2;b^2;c^2\) ta được:

\(\left(a^2\right)^2+\left(b^2\right)^2+\left(c^2\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)

Mặt khác ta cũng có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\ge ab.bc+bc.ca+ab+ca=abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

9 tháng 11 2016

a/ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế :

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

b/ \(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)

\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{b+2c+a}\)

\(\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{4}{c+b+2a}\)

Cộng theo vế :

\(2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)

 

8 tháng 11 2019

1 ) \(â+b\ge2\sqrt{ab}\)

Tương tự : \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi a = b = c

2) Nhân 2 vế bpt vs abc

Cm như 1)

3) \(a+2\ge2\sqrt{2a}\)

\(b+8\ge2\sqrt{8b}\)

\(a+b\ge2\sqrt{ab}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)

nên k xảy ra đẳng thức

29 tháng 1 2020

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) ( đúng )

Dấu "=" \(\Leftrightarrow a=b\)

a) Áp dụng BĐT trên ta có:

\(\Sigma\left(\frac{1}{a^3+b^3+abc}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{a+b+c}\cdot\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{\left(a+b+c\right)\cdot abc}=\frac{1}{abc}\)

Dấu "=" khi \(a=b=c\)

b) \(\Sigma\left(\frac{1}{a^3+b^3+1}\right)\le\Sigma\left(\frac{1}{ab\left(a+b\right)+abc}\right)=\Sigma\left[\frac{1}{ab}\cdot\left(\frac{1}{a+b+c}\right)\right]=\frac{1}{abc}=1\)

Dấu "=" khi \(a=b=c=1\)

c) \(\Sigma\left(\frac{1}{a+b+1}\right)\le\Sigma\left(\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)+\sqrt[3]{abc}}\right)=\Sigma\left[\frac{1}{\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)}\right]\)

\(=\frac{1}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\cdot\left(\frac{1}{\sqrt[3]{ab}}+\frac{1}{\sqrt[3]{bc}}+\frac{1}{\sqrt[3]{ca}}\right)=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\cdot\sqrt[3]{abc}}=\frac{1}{\sqrt[3]{abc}}=1\)

Dấu "=" khi \(a=b=c=1\)

10 tháng 8 2019

1.

C/m bổ đề: \(a^3-b^3\ge\frac{1}{4}\left(a^3-b^3\right)\) với \(\forall a,b\in R,a\ge b\)

\(\Leftrightarrow4a^3-4b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\ge0\)

\(\Leftrightarrow3a^3+3a^2b-3ab^2-3b^3\ge0\)

\(\Leftrightarrow3\left(a^2-b^2\right)\left(a+b\right)\ge0\)

\(\Leftrightarrow3\left(a+b\right)^2\left(a-b\right)\ge0\)(đúng)

Theo bài ra: \(a^3-b^3\ge3a-3b-4\)

\(\Leftrightarrow\) Cần c/m: \(\left(a-b\right)^3\ge12a-12b-16\)(1)

Thật vậy:

\(\left(1\right)\)\(\Leftrightarrow\left(a-b\right)^3-12\left(a-b\right)+16\ge0\)

\(\Leftrightarrow\left[\left(a-b\right)^3-8\right]-12\left(a-b-2\right)\ge0\)

\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a-b\right)+4\right]-12\left(a-b-2\right)\ge0\)

\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a+b\right)-8\right]\ge0\)

\(\Leftrightarrow\left(a-b-2\right)^2\left(a-b+4\right)\ge0\) (đúng với mọi a,b thỏa mãn \(a,b\in R,a\ge b\))

10 tháng 8 2019

2.

\(BĐT\Leftrightarrow\frac{1}{\frac{a+b}{ab}}+\frac{1}{\frac{c+d}{cd}}\le\frac{1}{\frac{a+b+c+d}{\left(a+c\right)\left(b+d\right)}}\)

\(\Leftrightarrow\frac{ab}{a+b}+\frac{cd}{c+d}\le\frac{\left(a+c\right)\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\frac{ab\left(c+d\right)+cd\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}\le\)\(\frac{ab+ad+bc+cd}{a+b+c+d}\)

\(\Leftrightarrow\frac{abc+abd+acd+bcd}{ac+ad+bc+bd}\le\frac{ab+ad+bc+cd}{a+b+c+d}\)

\(\Leftrightarrow\left(ad+ab+bc+cd\right)\left(ac+ad+bc+bd\right)\ge\)\(\left(a+b+c+d\right)\left(abc+abd+acd+bcd\right)\)

\(\Leftrightarrow\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng với mọi a,b,c,d>0)

13 tháng 2 2020

a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)

Đẳng thức xảy ra khi \(a=b=c\)

b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=c\)

c) Theo câu b và BĐT Cauchy-Schwarz:

\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(a=b=c\)

13 tháng 2 2020

áp dụng bđt cô si có dc k

8 tháng 2 2020

a.

\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(luôn đúng)

b. Áp dụng BĐT \(x^2+y^2\ge2xy\)

\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

c. Tương tự câu b

8 tháng 2 2020

Áp dụng BĐT Cô si ta có

i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

k. Tương tự câu i