Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa mấy cái này tưởng mấy em được học rồi nhỉ?
a, \(|3x-4|+|4y+1|=0\)
\(\Rightarrow\hept{\begin{cases}|3x-4|=0\\|4y+1|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-4=0\\4y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{4}\end{cases}}}\)
b, Lập bảng xét dấu giá trị tuyệt đối
\(x\) \(-\frac{5}{2}\) \(\frac{1}{3}\)
\(2x+5\) \(-5-2x\) \(0\) \(2x+5\) \(||\) \(2x+5\)
\(3x-1\) \(1-3x\) \(||\)\(1-3x\) \(0\)\(3x-1\)
\(VT\) \(||\) \(||\)
TH1: \(x< -\frac{5}{2}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=-5-2x\\|3x-1|=1-3x\end{cases}}\)
\(\Rightarrow-5-2x+1-3x=3\)\(\Leftrightarrow-4-5x=3\Leftrightarrow x=-\frac{7}{5}\left(L\right)\)
TH2: \(-\frac{5}{2}\le x\le\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=2x+5\\|3x-1|=1-3x\end{cases}}\)
\(\Rightarrow2x+5+1-3x=3\)\(\Leftrightarrow6-x=3\Leftrightarrow x=3\left(L\right)\)
TH3: \(x>\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}2x+5|=2x+5\\|3x-1|=3x-1\end{cases}}\)
\(\Rightarrow2x+5+3x-1=3\)\(\Leftrightarrow5x+4=3\Leftrightarrow5x=-1\Leftrightarrow x=-\frac{1}{5}\left(L\right)\)
Vậy PT đã cho vô nghiệm.
P/S: Không hiểu ở đâu thì nhắn chị nhé.
\(\left|x+\dfrac{1}{7}\right|-\dfrac{2}{3}=0\)
\(\Rightarrow\left|x+\dfrac{1}{7}\right|=0+\dfrac{2}{3}\\ \Rightarrow\left|x+\dfrac{1}{7}\right|=\dfrac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{7}=\dfrac{2}{3}\\x+\dfrac{1}{7}=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}-\dfrac{1}{7}\\x=-\dfrac{2}{3}-\dfrac{1}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{21}\\x=-\dfrac{17}{21}\end{matrix}\right.\)
Nếu bạn cần trợ giúp về công nghệ, tin học thì bạn vô trang web: http://vforum.vn/diendan/index.php
Còn đây là trang web để đăng câu hỏi học tập nhé bạn! Mong bạn thông cảm!
--------------------------------------------THE END--------------------------------------------------
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\text{ CMR : }\frac{7}{12}< A< \frac{5}{6}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2.\frac{1}{2}-2.\frac{1}{4}-...-2.\frac{1}{98}\)
\(A=1+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{49}\)
\(A=\frac{1}{51}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{51.25}=\frac{25}{51}< \frac{25}{30}=\frac{5}{6}\) (đpcm)
Và \(A>25.\frac{1}{75}+25.\frac{1}{100}=\frac{7}{12}\)
Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)
= (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6
\(\frac{1}{2.7}+\frac{1}{7.12}+\frac{1}{12.17}+....+\frac{1}{2012.2017}\)
\(=\frac{1}{5}\left(\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+....+\frac{5}{2012.2017}\right)\)
\(=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+....+\frac{1}{2012}-\frac{1}{2017}\right)\)
\(=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{2017}\right)\)
\(=\frac{1}{5}.\frac{2015}{4034}=\frac{403}{4034}\)
ĐẶT A=DÃY SỐ TRÊN=>5A=5/2.7+........+5/2012.2017
=>A=1/2-1/7........-1/2012-1/2017 RÚT GỌN TA ĐƯỢC A=1/2-1/2017