K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

mk coi một đống

biến thái hết với nhau rồi

18 tháng 6 2021

tại vì theo mệnh đề 5 thì hùng xem thì cả nam và ba nam đều xem, mà mệnh đề 1 lại nói là bố xem thì mẹ cũng sẽ xem, khi nhìn qua mệnh đề 2 thì bạn sẽ thấy nói là hôm đó chỉ có mẹ hoặc nam xem tivi, vậy mình suy ra được hùng không xem tivi, mệnh đề 4 nói là ông và hùng chỉ có 1 người không xem tivi, hồi nãy đã đoán ra hùng không xem vậy suy ra được là ông hôm đó có xem, mà ông xem thì phải có nam xem cùng, vậy hôm đó nam cũng có xem, mệnh đề 2 nói là hôm đó mẹ hoặc nam xem tivi, mà hồi nãy đã đoán được nam có xem, vậy suy ra được mẹ không có xem, mệnh đề 1 nói là mẹ luôn xem cùng bố vậy suy ra hôm đó bố cũng không có xem tiv

18 tháng 6 2021

Hôm đó có Nam, ông của Nam 

chúc bạn học tốt

1 tháng 12 2019

máu đỏ da đên tôi là người châu phi

tui bít và tui thích

7 tháng 12 2019

Hình như Quang Hải không đá đc hôm nay đâu.Nghe nói Quang Hải bị gì ở chân ý.Mong là không sao,tớ không xem nhé.

7 tháng 12 2019

Tớ nè cậu!!!! kb vs mk nhá

NV
4 tháng 6 2019

\(y'=4x^3+3ax^2+2bx\)

\(y'=0\Rightarrow x\left(4x^2+3ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x^2+3ax+b=0\end{matrix}\right.\)

Xét \(g\left(x\right)=4x^2+3ax+b=0\) với \(\Delta=9a^2-16b\)

Hàm số luôn có 1 cực trị là \(x=0\), với \(y\left(0\right)=1\)

Dựa vào hình dáng đồ thị hàm bậc 4, để \(y\) đạt GTNN bằng 1 cũng chính là \(y\left(0\right)\) ta có các trường hợp sau:

- TH1: \(\Delta\le0\Rightarrow9a^2-16b\le0\Rightarrow b\ge\frac{9a^2}{16}\)

Khi đó \(S=a+b\ge a+\frac{9a^2}{16}=\frac{9}{16}\left(a+\frac{8}{9}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\)

- TH2: \(g\left(x\right)=0\) có 2 nghiệm cùng âm \(x_1< x_2< 0\)\(y\left(x_1\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}9a^2-16b>0\\\frac{b}{4}>0\\\frac{-3a}{4}< 0\\x_1^4+ax_1^3+bx_1^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b< \frac{9}{16}a^2\\b>0\\a>0\\x_1^2+ax_1+b=0\end{matrix}\right.\)

Nói chung ta ko cần tìm tiếp, do \(a;b>0\Rightarrow a+b>0>-\frac{4}{9}\)

TH3: \(g\left(x\right)=0\) có 2 nghiệm cùng dương \(0< x_1< x_2\)\(y\left(x_2\right)=1\)

\(\left\{{}\begin{matrix}9a^2-16b>0\\\frac{b}{4}>0\\-\frac{3a}{4}>0\\y\left(x_2\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b< \frac{9}{16}a^2\\b>0\\a< 0\end{matrix}\right.\)

\(y\left(x_2\right)=x_2^4+ax_2^3+bx_2^2+1=1\)

\(\Leftrightarrow x_2^2+ax_2+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}4x_2^2+3ax_2+b=0\\x_2^2+ax_2+b=0\end{matrix}\right.\) \(\Rightarrow3x_2^2+2ax_2=0\Rightarrow x_2=-\frac{2a}{3}\)

\(\Rightarrow\frac{4a^2}{9}-\frac{2a^2}{3}+b=0\Rightarrow b=\frac{2a^2}{9}\)

\(\Rightarrow S=a+b=\frac{2a^2}{9}+a=\frac{2}{9}\left(a+\frac{9}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

So sánh 2 giá trị \(-\frac{4}{9}\)\(-\frac{9}{8}\) ta được \(S_{min}=-\frac{9}{8}\) khi \(\left\{{}\begin{matrix}a=-\frac{9}{4}\\b=\frac{9}{8}\end{matrix}\right.\)