Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
đi tui cần điểm hỏi đáp
Đầu tiên chúng ta sẽ so sánh như sau
5^2010 và 5^2009
vì 2010>2009 nên 5^2010>5^200 (1)
1/5^2011+1 và 1/5^2010+1
vì 2011+1=2012
2010+1=2011
mà 2012>2011 nên 1/5^2011+1>1/5^2010+1 (2)
Từ 1 và 2 ta có thể suy ra A>B
Vậy A>B
ta có 2010 >2009 suy ra 5^2010 >5^2009 suy ra 5^2010 + 1>5^2009 +1 (1)
2011>2010 suy ra 5^2011 >5^2010 suy ra 1/5^2011<1/5^2010 suy ra 1/5^2011 +1 <1/5^2010 + 1 (2)
từ (1) và (2) => A=B
\(5A=\frac{5^{2011}+5}{5^{2011}+1}=1+\frac{4}{5^{2011}+1}\)
\(5B=\frac{5^{2010}+5}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)
\(5B>5A\Rightarrow B>A\)
Ta có:
A = \(\frac{5^{2010}+1}{5^{2011}+1}\)
5A = \(\frac{5^{2011}+5}{5^{2011}+1}\) = \(\frac{5^{2011}+1+4}{5^{2011}+1}\) = 1 + \(\frac{4}{5^{2011}+1}\)
B = \(\frac{5^{2009}+1}{5^{2010}+1}\)
5B = \(\frac{5^{2010}+5}{5^{2010}+1}\) = \(\frac{5^{2010}+1+4}{5^{2010}+1}\) = 1 + \(\frac{4}{5^{2010}+1}\)
Vì 1 + \(\frac{4}{5^{2011}+1}\) < \(\frac{4}{5^{2010}+1}\) => 5A < 5B
Vì 5A < 5B => A < B
ta có:5A = \(\frac{5^{2011}+5}{5^{2011}+1}\) = 1+\(\frac{4}{5^{2011}+1}\)
5B=\(\frac{5^{2010}+5}{5^{2010}+1}\)=1+\(\frac{4}{5^{2010}+1}\)
\(\frac{4}{5^{2011}+1}\)<\(\frac{4}{5^{2010}+1}\)=>1+\(\frac{4}{5^{2011}+1}\)<1+\(\frac{4}{5^{2010}+1}\)
=>5A<5B=>A<B
vậy:A<B
chúc pn hok tốt ^_^
Ta có: \(5A=\frac{5^{2011}+5}{5^{2011}+1}=\frac{5^{2011}+1+4}{5^{2011}+1}=1+\frac{4}{5^{2011}+16}\)
\(5B=\frac{5^{2010}+5}{5^{2010}+1}=\frac{5^{2010}+1+4}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)
Vì \(\frac{4}{5^{2011}+1}< \frac{4}{5^{2010}+1}\Rightarrow5A< 5B\Rightarrow A< B\)
Ta có:
A = \(\frac{5^{2010}+1}{5^{2011}+1}\)
\(\Rightarrow5A=\frac{5.\left(5^{2010}+1\right)}{5^{2011}+1}\)\(=\frac{5^{2011}+5}{5^{2011}+1}=1+\frac{4}{5^{2011}+1}\)
B=\(\frac{5^{2009}+1}{5^{2010}+1}\)
\(\Rightarrow5B=\frac{5.\left(5^{2009}+1\right)}{5^{2010}+1}=\frac{5^{2010}+5}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)
Ta thấy \(5^{2011}+1>5^{2010}+1\)
\(\Rightarrow\frac{4}{5^{2011}+1}< \frac{4}{5^{2010}+1}\)
\(\Rightarrow1+\frac{4}{5^{2011}+1}< 1+\frac{4}{5^{2010}+1}\)
Hay 5.A<5.B
Vậy A<B (đpcm)
Đặt M = \(1+9+9^2+......+9^{2010}\)
\(9M=9+9^2+9^3+......+9^{2011}\)
\(9M-M=8M=9^{2011}-1\)
Đặt K = \(1+9+9^2+......+9^{2009}\)
\(9K=9+9^2+9^3+.....+9^{2010}\)
\(9K-K=8K=9^{2010}-1\)
\(\Rightarrow A=\frac{9^{2011}-1}{9^{2010}-1}\)
Đặt H=\(1+5+5^2+....+5^{2010}\)
\(5H=5+5^2+......+5^{2011}\)
\(5H-H=4H=5^{2011}-1\)
ĐẶT G = \(1+5+5^2+.......+5^{2009}\)
\(5G-G=4G=5^{2010}-1\)
\(\Rightarrow B=\frac{5^{2011}-1}{5^{2010}-1}\)
Rồi bạn so sánh sẽ ra ngay
A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)= \(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)= \(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)
B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)= \(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)= \(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Do \(\frac{1}{9^{2010}}<\frac{1}{5^{2010}}\) ; \(\frac{1}{9^{2009}}<\frac{1}{5^{2009}}\) ;.....; \(\frac{1}{9}<\frac{1}{5}\)
=> \(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}<\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\)
=> 1:\(\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}\right)>1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)
Vậy A > B
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{5^{2010}+1}{5^{2011}+1}< \frac{5^{2010}+1+4}{5^{2011}+1+4}\)\(=\frac{5^{2010}+5}{5^{2011}+5}=\frac{5.\left(5^{2009}+1\right)}{5.\left(5^{2010}+1\right)}=\frac{5^{2009}+1}{5^{2010}+1}\)
\(\Rightarrow A< B\)
#)Giải :
Đầu tiên ta so sánh :
52010 và 52009
Vì 2010 > 2009 => 52010 > 52009 (1)
Tiếp theo :
1/52011 + 1 và 1/52010 + 1
Vì 2011 + 1 = 2012 và 2010 + 1 = 2011
Mà 2012 > 2011 => 1/52011 + 1 > 1/52010 + 1 (2)
Từ (1) và (2) => 52010 + 1/52011+1 > 52009+1/52010+1 => A > B
Vậy : A > B
#)Nếu đúng thì bn bảo mk nha :D
#~Will~be~Pens~#