Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
Với x=-1 giá trị biểu thức A là
5+2.[8.(-1)+2]=5+2.(-8+2)=5+2.(-6)=5-12= -7
Với x=-1; y=2 giá trị biểu thức B là
2.(y2-4x)=2.[22-4.(-1)]=2.(4+4)=2.8=16
a) Thay x vào biểu thức 5+2.(8x+2)
Ta được : 5 + 2. ( 8.(-1)+2)
= 5 + 2. (-6)
= 5 + ( -4 )
= 1
b) Thay x = -1 và y = 2 vào biểu thức 2.(\(y^2-4x\))
Ta được : \(2.\left(2^2-4.\left(-1\right)\right)\)
= 2. [ 4 - 4 . ( -1 )]
= 2. 0
= 0