Bất đẳng thức Bunyakovsky dạng thông thường
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Để hiểu sâu cần bắt nguồn từ cái này: \(\left(a-b\right)^2\ge0\) {gốc lớp 8}

đẳng thức khi a=b

\(\left(a-b\right)^2=a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)(1) đẳng thức khi a=b

tương tự có \(c^2+d^2\ge2cd\) (2)

đẳng thức khi c=d

hiển nhiên \(\left\{{}\begin{matrix}a^2+b^2\ge0\\c^2+d^2\ge0\end{matrix}\right.\) với mọi a,b,c,d thuộc R

Nhân (1) với (2) => điều cần chứng minh

Đẳng thức khi a=b và c=d

11 tháng 8 2016

ta có: \(ac+bd\ge2\sqrt{acdb}\Rightarrow\left(ac+db\right)^2\ge4acdb\). nên ta có hệ quả của bất đẳng thức cô-si.
để xảy ra cả bất đẳng thức và hệ quả thì a = b = c = d. 

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

28 tháng 2 2020

a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)

b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)

Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)

=>đpcm. Dấu bằng xảy ra khi a=b

c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)

Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2

30 tháng 3 2017

Không mất tính tổng quát giả sử: \(A\ge B\ge C\). Khi đó \(A\ge\dfrac{\pi}{3};C\le\dfrac{\pi}{3}\)

\(\dfrac{\pi}{2}\ge A\ge\dfrac{\pi}{3}\)\(\pi\ge A+B=\pi-C\ge\dfrac{2\pi}{3}\) nên

\(\left\{{}\begin{matrix}\dfrac{\pi}{2}\ge A\ge\dfrac{\pi}{3}\\\dfrac{\pi}{2}+\dfrac{\pi}{2}\ge A+B\ge\dfrac{\pi}{3}+\dfrac{\pi}{3}\\\dfrac{\pi}{2}+\dfrac{\pi}{2}+0=A+B+C=\dfrac{\pi}{3}+\dfrac{\pi}{3}+\dfrac{\pi}{3}\end{matrix}\right.\)

Xét hàm số \(f\left(x\right)=\cos x\forall x\in\left[0;\dfrac{\pi}{2}\right]\)

Ta có: \(f"\left(x\right)=-\cos x< 0\forall x\in\left[0;\dfrac{\pi}{2}\right]\) nên hàm số \(f\left(x\right)\) lõm trên đoạn \(\left[0;\dfrac{\pi}{2}\right]\). Khi đó, theo BĐT Karamata ta có:

\(f\left(\dfrac{\pi}{2}\right)+f\left(\dfrac{\pi}{2}\right)+f\left(0\right)\le f\left(A\right)+f\left(B\right)+f\left(C\right)\le3f\left(\dfrac{\pi}{3}\right)\)

Hay \(\cos A+\cos B+\cos C\le\dfrac{3}{2}\)

NV
30 tháng 6 2020

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

NV
30 tháng 6 2020

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

8 tháng 2 2020

a.

\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(luôn đúng)

b. Áp dụng BĐT \(x^2+y^2\ge2xy\)

\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

c. Tương tự câu b

8 tháng 2 2020

Áp dụng BĐT Cô si ta có

i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

k. Tương tự câu i

4 tháng 8 2017

Giả sử cả 2 BĐT trên đều đúng

Cộng theo vế ta được

\(a^2+b^2+c^2+d^2+e^2< a\left(b+c+d+e\right)\)

\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)< 4a\left(b+c+d+e\right)\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2< 0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2< 0\) (vô lý)

Vậy điều giả sử sai

Nói cách khác, 1 trong 2 BĐT đã cho ở giả thiết là sai.