Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này trông quen quen. em xí một vé trước nhá:) khi nào đi công việc về suy nghĩ rồi sẽ làm:) Em ko hứa là làm được nhưng hứa sẽ suy nghĩ cùng a:D
\(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge\sqrt{\frac{6\left(a+b+c\right)}{\sqrt[3]{abc}}}\)
____________________
Điều cần chứng minh tương đương với
\(\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}+2\left(\sum_{cyc}\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{ca}}\right)\ge\frac{6\left(a+b+c\right)}{\sqrt[3]{abc}}\)
Theo BĐT AM-GM ta có: \(\frac{a}{b}+\frac{a}{c}+1\ge3\frac{a}{\sqrt[3]{abc}}\)
Tương tự rồi cộng theo vế ta có \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}+3\ge\frac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)
\(\rightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
Vậy còn cần chứng minh \(\sum_{cyc}\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{ca}}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)
\(\Leftrightarrow\sum_{cyc}\sqrt{a\left(a+b\right)\left(a+c\right)}\ge\frac{2\left(a+b+c\right)\sqrt{abc}}{\sqrt[3]{abc}}\)
\(\text{L.H.S}=\sum_{cyc}\sqrt{a\left(a+b\right)\left(a+c\right)}=\sum_{cyc}\sqrt{a^2(a+b+c)+abc}\)
\(=\sqrt{\sum_{cyc}\left(a^2(a+b+c)+abc+2\sqrt{(a^2(a+b+c)+abc)(b^2(a+b+c)+abc)}\right)}\)
\(\ge\sqrt{\sum_{cyc}\left(a^2(a+b+c)+abc+2(ab(a+b+c)+abc)\right)}\)
\(=\sqrt{\sum_{cyc}(a^3+3a^2b+3a^2c+5abc)}\)
Đặt \(\left(a+b+c,ab+bc+ca,abc\right)\rightarrow\left(3u,3v^2,w^3\right)\) Khi đó còn phải cm
\(27u^3+9w^3\ge36u^2w\rightarrow f'\left(w^3\right)=9-\frac{12u^2}{\left(w^3\right)^{\frac{2}{3}}}\le0\) . Từ đó ta khẳng định được f là hàm lõm -> f nhận 1 GTLN của \(w^3\)
BĐT cần chứng minh thuần nhất từ đó ta có thể giả sử \(b=c=1\)
Đặt \(a=t^3\) và sau khi phân tích ta có:
\((t-1)^2(t+2)(t^6-t^4+4t^3-3t^2-2t+4)\ge0.\)\(\square\)
\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)
\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)
\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)
\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)
PS: Lần sau chép đề cẩn thận nhé bạn.
Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng
Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
Ta cần chứng minh \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)
Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)
Bất đẳng thức đã được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Áp dụng bđt Cô si với 2 số dương là: \(\sqrt{\frac{b+c}{a}}\) và 1 ta có:
\(\left(\frac{b+c}{a}+1\right):2\ge\sqrt{\frac{b+c}{a}.1}\)
\(\Leftrightarrow\) \(\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\)
hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right)\)
Tương tự như trên ta cũng có:
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right)\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right)\)
Từ (1); (2) và (3) \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\begin{cases}\sqrt{\frac{b+c}{a}}=1\\\sqrt{\frac{a+c}{b}}=1\\\sqrt{\frac{a+b}{c}}=1\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{b+c}{a}=1\\\frac{a+c}{b}=1\\\frac{a+b}{c}=1\end{cases}\)\(\Leftrightarrow\begin{cases}b+c=a\\a+c=b\\a+b=c\end{cases}\)
\(\Rightarrow2.\left(a+b+c\right)=a+b+c\)\(\Rightarrow a+b+c=0\), mâu thuẫn với đề bài a; b; c là các số dương
Như vậy dấu "=" không xảy ra
Do đó, \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\left(đpcm\right)\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\sqrt{a}+\sqrt{a}+a^2\geq 3a$
$\sqrt{b}+\sqrt{b}+b^2\geq 3b$
$\sqrt{c}+\sqrt{c}+c^2\geq 3c$
Cộng theo vế thu được:
$2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq 3(a+b+c)$
$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq (a+b+c)^2$
$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 2(ab+bc+ac)$
$\Leftrightarrow \sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ac$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Đặt:
\(L=\sqrt{a+2009}+\sqrt{b+2009}+\sqrt{c+2009}\)
\(L^2=\left(\sqrt{a+2009}+\sqrt{b+2009}+\sqrt{c+2009}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(a+b+c+6027\right)\) (bđt bunhiacopxki)
\(=3\left(2+6027\right)=18087\Leftrightarrow A\le\sqrt{18087}\)
p/s: đề đã fix vì t thấy số qá to:v