K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

NV
12 tháng 5 2019

Bài 1:

\(\Leftrightarrow-cosa-cosa+sina+cosa=0\Leftrightarrow sina=cosa\)

\(\Rightarrow a=\frac{\pi}{4}+k\pi\Rightarrow a\) thuộc cung thứ nhất và thứ 3

Bài 2:

Ta có \(\frac{5\pi}{3}-\left(-\frac{\pi}{3}\right)=\frac{6\pi}{3}=2\pi\Rightarrow\) góc \(\frac{5\pi}{3}\)\(-\frac{\pi}{3}\) cùng cung biểu diễn

22 tháng 8 2019

Solution:

Dạng tổng quát :

\(\sqrt{1+k^2+\frac{k^2}{\left(k-1\right)^2}}=\sqrt{\frac{\left(1+k^2\right)\left(k+1\right)^2+k^2}{\left(k-1\right)^2}}\)

\(=\sqrt{\frac{k^4-2k^3+3k^2-2k+1}{\left(k-1\right)^2}}=\sqrt{\frac{\left(k^2-k\right)^2+2\left(k^2-k\right)+1}{\left(k-1\right)^2}}\)

\(=\sqrt{\frac{\left(k^2-k+1\right)^2}{\left(k-1\right)^2}}=\frac{k^2-k+1}{k-1}\)

\(=\frac{k\left(k-1\right)+1}{k-1}=k+\frac{1}{k-1}\)

Áp dụng ta có :

\(S=\sqrt{1+2020^2+\frac{2020^2}{2019^2}}-\frac{2020}{2019}\)

\(S=2020+\frac{1}{2019}-\frac{2020}{2019}\)

\(S=2020+\frac{-2019}{2019}\)

\(S=2020-1\)

\(S=2019\)

Vậy...

22 tháng 8 2019

trời, tự nhận mik ngu Phạm Thị Thùy Linh

13 tháng 2 2020

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm

Đẳng thức xảy ra khi \(a=b=c\)

b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

Cách làm tương tự câu a.

c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)

d) Em làm biếng quá anh làm nốt đi:P

13 tháng 2 2020

lm phần d đi a k bt lm

9 tháng 9 2019

ta có \(\frac{1}{a}\)+\(\frac{1}{c}\)=\(\frac{1}{a+b+c}\)-\(\frac{1}{b}\)

\(\frac{a+c}{ac}\)=\(\frac{-\left(a+c\right)}{b\left(a+b+c\right)}\)

\(\left[{}\begin{matrix}a+c=0\\ac=-b\left(a+b+c\right)\end{matrix}\right.\)

\(\left[{}\begin{matrix}a=-c\\\left(b+a\right)\left(b+c\right)=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}a=-c\\c=-b\\b=-a\end{matrix}\right.\)

(*) với a=-c ⇒điều cần CM :\(\frac{1}{a^{2019}}\)+\(\frac{1}{b^{2019}}\)+\(\frac{1}{c^{2019}}\)=\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

\(\frac{1}{-c^{2019}}\)+\(\frac{1}{b^{2019}}\)+\(\frac{1}{c^{2019}}\)=\(\frac{1}{-c^{2019}+b^{2019}+c^{2019}}\)

\(\frac{1}{b^{2019}}\)=\(\frac{1}{b^{2019}}\) đúng vậy ta có điều cần CM

tương tự với 2 TH còn lại nhé

9 tháng 9 2019

mình viết thiếu a,b,c là cạnh tam giác

NV
5 tháng 6 2020

\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)

\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)

\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)