Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(a+a^2+a^3+........a^29+a^30)
=(a+a^2)+(a^3+a^4)+........(a^29+a^30)
=a(1+a)+a^3(1+a)+.........a^29(1+a)
=a+1(a+a^3+.......+a^29)chia hết cho a+1
nhớ k cho mình nha
2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)
Ta có:
\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(x\inƯC\left(51,68\right)\)
\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)
Vì x > 9 nên x = 17
Vậy số chia là 17
3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh
b,
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)
Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N
\(a,A=5^1+5^2+...+5^{100}\)
\(\Rightarrow A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(\Rightarrow6\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow A⋮6\)
\(b,B=2+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(\Rightarrow B=2\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(\Rightarrow7\left(2+...+2^{28}\right)\)
\(\Rightarrow B⋮7\)
A=5+52+53+54+...+529+530
=(5+52)+(53+54)+...+(529+530)
=5(5+1)+53.(5+1)+...+529.(5+1)
=6.(5+53+...+529) chia hết cho 6(đpcm)
Ta có: A=(3+3^2+3^3)+............+(3^28+3^29+3^30)
A=(3.1+3.3+3.3^2)+...........+(3^28.1+3^28.3+3^28.3^2)
A=3(1+3+3^2)+...........+3^28(1+3+3^2)
A=3.13+..........+3^28.13 chia hết cho 13 suy ra A chia hết cho 13
A=2+22+......+230
2A=22+23+............+ 231
A=(22+23+............+ 231)-(2+22+......+230)
A=22+23+............+ 231-2-22-...-230
A= 231-2
A=2.2.229-2
A=4.229-2
A\(⋮\)4 ( vì 4 chia hết cho 4 )
theo mk A ko chia hết cho 4
vì 22\(⋮\)4; 23\(⋮\)4 ;...
mà 2 ko chia hết cho 4 nên A ko chia hết cho 4
=> A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ..... + 328(1 + 3 + 32)
=> A = 3.13 + 34.13 + ..... + 328.13
=> A = 13( 3 + 34 + ..... + 328) chia hết cho 13
Ta có : A = 3 + 32 + 33 + ..... + 329 + 330
=> A = (3 + 32 + 33) + (34 + 35 + 36) + ...... + (328 + 329 + 330)
=> A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ..... + 328(1 + 3 + 32)
=> A = 3.13 + 34.13 + ..... + 328.13
=> A = 13( 3 + 34 + ..... + 328) chia hết cho 13