Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+42+43+...+4100
4A=4.(4+42+43+...+4100)
4A=4.4+4.42+...+4.499+4.4100
4A= 42+...+4100+4101
- A=4+42+...+4100
= 3A=4101-4
3A=4100+1-4
3A=4100.4-4
3A=(42)50.4-4
3A=1650.4-4
3A=.......6.4-4
3A=.......4-4
3A=.......0
A=.......0:3
A=.......0
Vậy A : 5 dư 0.
Tick cho mình nếu đúng nha bạn!
A=2+2^2+2^3+2^4+...+2^60
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+..+(2^57+2^58+2^59+2^60)
A=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+..+2^57(1+2+2^2+2^3)
A=2.15+2^5.15+...+2^57.15
A=15(2+2^5+...+2^57)
=>A chia hết cho 15
A=2+2^2+2^3+2^4+...+2^60
A=(2+2^2+2^3+2^4+2^5+2^6)+(2^7+2^8+2^9+2^10+2^11+2^12)+....+(2^54+2^55+2^56+2^57+2^58+2^59+2^60)
A=2(1+2+2^3+2^4+2^5)+2^7(1+2+2^2+2^3+2^4+2^5)+...+2^54(1+2+2^2+2^3+2^4+2^5)
A=2.63+2^7.63+...+2^54.63
A=63(2+2^7+...+2^54)
A=21.3(2+2^7+...+2^54)
=>A chia hết cho 21
Ta co A=2+2^2+2^3+2^4+2^5+...+2^60
A=(2+2^2+2^3+2^4)+2^5+...+(2^57+2^58+2^59+2^60)
A=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
A=2*15+...+2^57*15
A=15(2+...+2^57) chia het cho 15=> chia het cho 3
Lai co : A=(2+2^2+2^3)+...+(2^58+2^59+2^60)
A=2(1+2+2^2)+...+2^58(1+2+2^2)
A=2*7+...+2^58*7
A=7*(2+...+2^58) chia het cho 7
A chia het cho ca 3 va 7 ma UCLN(3;7)=1
=>A chia het cho 21
Câu 1:
\(A=4+4^2+4^3+.....+4^{2008}\)
\(\Rightarrow4A=4^2+4^3+4^4+...+4^{2009}\)
\(\Rightarrow4A-A=\left(4^2+4^3+4^4+....+4^{2009}\right)-\left(4+4^2+4^3+....+4^{2008}\right)\)
\(\Rightarrow3A=4^{2009}-4\)
\(\Rightarrow A=\frac{4^{2009}-4}{3}\)
Câu 2:
Đặt \(B=A+1=1+4+4^2+4^3+4^4+....+4^{2008}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2006}+4^{2007}+4^{2008}\right)\)
\(=21+4^3\left(1+4+4^2\right)+...+4^{2006}\left(1+4+4^2\right)\)
\(=21+4^3\cdot21+...+4^{2006}\cdot21\)
\(=21\left(1+4^3+...+4^{2006}\right)\)
\(\Rightarrow B⋮21\)
\(\Rightarrow A=B-1\)Không chia hết cho 21
A = 1+4+\(4^2\)+\(4^3\)+...+\(4^{2018}\)
4.A = 4+ \(4^2\)+\(4^3\)+\(4^4\)+...+\(4^{2019}\)
_
A = 1+4+\(4^2\)+\(4^3\)+...+\(4^{2018}\)
3A = \(4^{2019}\)-1
\(A=1+4+4^2+...+4^{2018}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{2019}\)
\(\Rightarrow4A-A=\left(4+4^2+4^3+...+4^{2019}\right)-\left(1+4+4^2+...+4^{2018}\right)\)
\(\Rightarrow3A=4^{2019}-1\)
\(\Rightarrow A=\frac{4^{2019}-1}{3}\)
Vậy \(A=\frac{4^{2019}-1}{3}\)
_Chúc bạn học tốt_
A=(4+4^2+4^3)+...+(4^22+4^23+4^24)
=4(1+4+4^2)+...4^22(1+4+4^2)
1+4+4^2=21 nên từng số hạng của A chia hết cho 21 suy ra A chia hết cho 21
A=1+3+3^2+3^3+3^4+...+3^100
3A=3+3^2+3^3+3^4+...+3^101
3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)
2A=3^101-1
A=(3^101-1):2
phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé
bn nhớ nhầm à sao có hai số 4 z
tớ ko nhớ nhầm đâu