K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2023

\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\)

\(A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2023}\\ A=\dfrac{2023}{2023}-\dfrac{1}{2023}\\ A=\dfrac{2022}{2023}\)

20 tháng 3 2023

 

A=21.3+23.5+...+297.99�=21.3+23.5+...+297.99

A=1113+1315+...+197199�=11−13+13−15+...+197−199

A=11199�=11−199

A=9899

=

2151+5171+....+951981

=12−198=21981tự làm tiếp nha ( giống câu a)

26 tháng 2 2023

a) đặt

 \(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)

b)

đặt

\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)

TH
Thầy Hùng Olm
Manager VIP
26 tháng 2 2023

\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)

\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)

2 tháng 5 2018

3A = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\)

3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)

3A=\(\frac{1}{2}-\frac{1}{98}\)

3A=\(\frac{98}{196}-\frac{2}{196}\)=\(\frac{96}{196}=\frac{24}{49}\)

A=\(\frac{24}{49}:3=\frac{24}{49}.\frac{1}{3}=\frac{8}{49}\)

Vậy A = \(\frac{8}{49}\)

2 tháng 5 2018

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\)

\(\Rightarrow3A=3\left(\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\right)\)

\(\Rightarrow3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{98}\)

\(\Rightarrow3A=\frac{24}{49}\)

\(\Rightarrow A=\frac{24}{49}:3\)

\(\Rightarrow A=\frac{8}{49}\)

Vậy \(A=\frac{8}{49}\)

9 tháng 4 2017

\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)

\(\Rightarrow G=\dfrac{64}{505}\)

9 tháng 4 2017

giải hộ với

Áp dụng ct : 1/n.(n+1) = 1/n - 1/n+1

Ta có : A = 1/2.5 + 1/5.8 + ...+1/95.98

           A = 1/2 - 1/5 + 1/5 - 1/8 +...+ 1/95 - 1/98

           A = 1/2 - 1/98 

           A = 24/49

k mk nha bn

24 tháng 4 2016

= 1/3 . (1/2.5 + 1/5.8 + 1/8.11 + ... + 1/92.95 + 1/95.98)

= 1/3 . (1/2 - 1/5 + 1/5 - 1/8 + 1/11 - ... + 1/92 - 1/95)

= 1/3 . (1/2 - 1/95)

= 1/3 . 93/190

= 31/190

tớ chắc nha nguten duc huy

3 tháng 5 2018

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)

\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{24}{49}=\frac{8}{49}\)

3 tháng 5 2018

\(=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)

\(=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(=3.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(=3.\frac{24}{49}\)

\(=\frac{72}{49}\)

9 tháng 5 2018

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92.95}+\frac{1}{95.99}\)

\(A=\frac{1}{3}\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{92}+\frac{1}{95}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{95}\right)\)

Bạn tự bấm máy tính là ra

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{95}-\frac{1}{98}\)

\(=\frac{1}{2}-\frac{1}{98}\)tự làm tiếp

11 tháng 5 2022

Lấy số đầu + số cuối :3+1

22 tháng 1 2016

ê bài nay tớ giảng cho kết bạn với tớ tớ gửi qua cho

A=2/2.5+2/5.8+2/8.11+...+2/95.98

=2/3.(3/2.5+3/5.8+3/8.11+...+3/95.98)

=2/3.(1/2-1/5+1/5-1/8+1/8-1/11+...+1/95-1/98)

=2/3.(1/2-1/98)

=2/3.24/49

=16/49

VẬY A=16/49