Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
A=( 2+2^2) + (2^3+2^4) +......+ (2^59 + 2^60)
A=2.(1+2) + 2^3. (1+2) +.....+ 2^59.(1+2)
A=2.3+2^3.3+......+ 2^59.3
A= 3. (2+2^3+....+2^59)
vì 3 chia hết cho 3 suy ra A chia hết cho 3Nguyễn Thị kim Oanh
tick nha
đừng dại dột bấm vào Đúng 0 này của nó sẽ hối hận cả đời
a,10^33+8 chia hết cho 18
1033 + 8 = 10...000 ( 33 chữ số 0 ) + 8 = 10...008 ( 32 chữ số 0 ) , có :
- Chữ số tận cùng 8 chia hết cho 2 . ( 1 )
- Tổng các chữ số : 1 + 0 +...+ 0 + 0 + 8 = 9 chia hết cho 9 . ( 2 )
Từ ( 1 ) và ( 2 ) => 10^33 + 8 chia hết cho 18 .
b,10^10+14 chia hết cho 6
1010 + 14 = 10...000 ( 10 chữ số 0 ) + 14 = 10...014 ( 8 chữ số 0 ) , có :
- Chữ số tận cùng 4 chia hết cho 2 . ( 1 )
- Tổng các chữ số : 1 + 0 +...+ 0 + 1 + 4 = 6 chia hết cho 3 . ( 2 )
Từ ( 1 ) và ( 2 ) => 10^10 + 14 chia hết cho 6 .
Còn lại bn tự làm nha .
Ta có
+) \(10^{33}+8=100......00000008⋮9\) (1)
( 33 chữ số 0 )
+) 1033 chia hết cho 2
8 chia hết cho 2
=> 1033+8 chia hết cho 2 (2)
Mà (2;3)=1
Từ (1) và (2) => \(10^{33}+8⋮2.9=18\)
b) Ta có
+) \(10^{10}+14=100...014⋮3\) (4)
( 9 chữ số 0)
+) 1010 chia hết cho 2
14 chia hết cho 2
=> 1010+14 chia hết cho 2 (4)
Mà (2;3)=1
Từ (1) và (2)
=>\(10^{10}+14⋮2.3=6\)
c)
MÌnh sửa một chút 119=>119
Có lẽ do đánh vội nên bạn viết sai :))
Ta thấy A có 20 số hạng
Mà mỗi số hạng đều có tận cùng là 1
=>\(A=\left(\overline{....1}\right)+\left(\overline{....1}\right)+.....+\left(\overline{....1}\right)=\left(\overline{....20}\right)\)
chia hết cho 5
d)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)=3\left(2+2^3+....+2^{59}\right)⋮3\left(5\right)\)
\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)=7\left(2+2^4+....+2^{58}\right)⋮7\)
\(B=2\left(1+2^2\right)+2^2\left(1+2^2\right)+....+2^{58}\left(1+2^2\right)=5\left(2+2^2+...+2^{58}\right)⋮5\left(6\right)\)
Mà (3;5)=1
Từ (5) và (6)
=>\(B⋮3.5=15\)
A = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57} +2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+..2^{57}.\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15.\left(2+2^5+...+2^{57}\right)\text{chia hết cho 15}\)
\(=5.3.\left(2+2^5+...+2^{57}\right)\text{ chia hết cho 5}\left(1\right)\)
A = \(2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+2^{56}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{56}.31\)
\(=31.\left(2+2^6+...+2^{56}\right)\text{ chia hết cho 31}\left(2\right)\)
Từ (1) và (2) => A chia hết cho 5.31
B = 1 + A nên B chia 5,31 và 15 đều dư 1.
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
A=(2^1+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2^1(1+2+2^2) + 2^4(1+2+2^2)+...+2^58(1+2+2^2)
=(1+2+2^2)(2^1+2^4+...+2^58)
=7(2^1+2^4+...+2^58). =>chia hết cho 7
Vậy A chia hết cho 7
Ta có : A = 2^1 + 2^2 + 2^3 + ... + 2^59 + 2^60
Số lượng số của A là : ( 60 - 1 ) :1 + 1 = 60 ( số )
Vì \(60⋮4\)nên ta nhóm 43số liền nhau thành 1 nhóm như sau :
A = ( 2^1 + 2^2 +2^3 ) + ( 2^5 +2^6 + 2^7 ) + ...+ ( 2^58 +2^59 +2^60 )
= 2^1 . ( 1 + 2 + 2^2 ) + 2^5 . ( 1 + 2 + 2^2 ) + ... + 2^58 . ( 1 + 2 + 2^2 )
= 2^1 . 7 + 2^5 . 7 + ...+ 2^58 . 7
= 7 . ( 2^1 + 2^5 +..+2^58 ) \(⋮7\)\(\left(ĐPCM\right)\)
Tham khảo cách làm của Mk nhé !!!
Ta có :
A = 2 ^ 1 + 2 ^ 2 + ... + 2 ^ 60
= ( 21 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
=
A= ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 14 + 14 x 23 + 14 x 26 + ... + 14 x 258
= 14 x ( 1 + 23 + 26 + ... + 258 )
Vì 14 chia cho 7 nên A chia hết cho 7 .
A = ( 21 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 257 + 258 + 259 + 260 )
= 30 + 30 x 24 + ... + 30 x 256
= 30 x ( 1 + 24 + ... + 256 )
Vì 30 chia hết cho 10 nên A chia hết cho 10 .