Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(M=\left(\frac{12}{13}+\frac{21}{65}\right):\frac{81}{13}\)
\(M=\left(\frac{120}{130}+\frac{42}{130}\right).\frac{13}{81}\)
\(M=\frac{81}{65}.\frac{13}{81}\)
\(M=\frac{1}{5}\)
M=(12.107/13.107 + 21.10101/65.10101):27.3/13=(12/13 + 21/65):27.3/13
=[(12.5+21)/65]:27.3/13
=81/13.5 : 27.3/13 =81/(5.27.3)=1/5
Đs: M=1/5
\(M=\left(\dfrac{12}{13}+\dfrac{21}{65}\right):\dfrac{9}{13}=\dfrac{81}{65}\cdot\dfrac{13}{9}=\dfrac{1}{5}\cdot9=\dfrac{9}{5}\)
a: \(=\left(\dfrac{17}{10}+\dfrac{70}{10}-\dfrac{87}{10}\right):\left(\dfrac{23}{4}-\dfrac{11}{4}+\dfrac{9}{25}\right)\cdot\left(12,98\cdot0,25\right)+12,5\)
\(=0:\left(3+\dfrac{9}{25}\right)\cdot\left(12,98+0,25\right)+12,5\)
=12,5
b: \(=\dfrac{13}{12}\cdot\dfrac{27}{5}\cdot2\cdot\dfrac{34}{9}\cdot2\cdot\dfrac{2}{17}\)
\(=\dfrac{13}{12}\cdot2\cdot\dfrac{27}{5}\cdot\dfrac{34}{9}\cdot\dfrac{4}{17}\)
\(=\dfrac{13}{6}\cdot\dfrac{27}{5}\cdot\dfrac{8}{9}=\dfrac{8}{6}\cdot3\cdot\dfrac{13}{5}=4\cdot\dfrac{13}{5}=\dfrac{52}{5}\)
a) \(\left(\dfrac{1}{2}x-3\right)\left(-\dfrac{1}{3}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=0+3\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{1}{2}\\x=0-\left(-\dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{1}{3}\end{matrix}\right.\)
d) \(9x^2=1\)
\(\Leftrightarrow x^2=1:9\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
\(\Leftrightarrow x^2=\left(\dfrac{1}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(\dfrac{2006\times2005-1}{2004\times2006+2005}=\dfrac{2006\times\left(2004+1\right)-1}{2004\times2006+2005}\)
\(=\dfrac{2004\times2006+2006-1}{2004\times2006+2005}=\dfrac{2004\times2006+2005}{2004\times2006+2005}\)
\(=1\)
\(18\times\left(\dfrac{19191919+88888}{21212121+99999}\right)=18\times\left(\dfrac{19}{21}+\dfrac{8}{9}\right)\)
\(=18\times\dfrac{113}{63}=\dfrac{226}{7}=32\dfrac{2}{7}\)
\(T=\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).......\left(\dfrac{1}{98}+1\right).\left(\dfrac{1}{99}+1\right) \) \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}....\dfrac{99}{98}\cdot\dfrac{100}{99}\)
\(=\dfrac{100}{2}=50\)
\(T=\left|\dfrac{1}{2}+1\right|\left|\dfrac{1}{3}+1\right|\left|\dfrac{1}{4}+1\right|.....\left|\dfrac{1}{98}+1\right|\left|\dfrac{1}{99}+1\right|\)
\(T=\left|\dfrac{3}{2}\right|.\left|\dfrac{4}{3}\right|.\left|\dfrac{5}{4}\right|......\left|\dfrac{99}{98}\right|.\left|\dfrac{100}{99}\right|\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5.....99.100}{2.3.4.....98.99}=\dfrac{100}{2}=50\)
Bài 1: a) Ta có : \(\dfrac{-3}{x}=\dfrac{x}{-27}\Leftrightarrow\left(-3\right).\left(-27\right)=x.x\Leftrightarrow81=x^2\Leftrightarrow9^2=x^2\Leftrightarrow x=9\)
b) Do \(\dfrac{2}{3}\) của x là -150 nên x là: (-150) : \(\dfrac{2}{3}\) = -225
c) \(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+2}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{2}-\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{18}\)
\(\Leftrightarrow x+2=18\)
\(\Leftrightarrow x=16\)
Bài 2:
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\)
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right).0\)
\(A=0\)
a: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{13}{15-2}\cdot\dfrac{-15}{40}=\dfrac{-3}{8}\)
b: \(=\dfrac{18\left(34-124\right)}{36\left(-17-13\right)}=\dfrac{1}{2}\cdot\dfrac{-90}{-30}=\dfrac{3}{2}\)
c: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{\dfrac{-1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}\)
\(=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
a)\(\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\cdot\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}\cdot\dfrac{-5}{6}+\left(\dfrac{-1}{4}\right)=\dfrac{5}{12}+\dfrac{1}{2}=\dfrac{11}{12}\)
b)\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)=\dfrac{164}{9}-\left(\dfrac{81}{13}+\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)=\dfrac{164}{9}-\dfrac{3411}{247}+\dfrac{259}{52}=\dfrac{6425}{684}\)
c)\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right):2\dfrac{3}{5}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left[\dfrac{-7}{3}-\dfrac{13}{12}\cdot\dfrac{5}{13}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left(\dfrac{-11}{4}\right)\cdot\left(\dfrac{-3}{4}\right)=\dfrac{3}{16}\)
d)\(\dfrac{21}{33}:\dfrac{11}{5}-\dfrac{13}{33}:\dfrac{11}{5}+\dfrac{25}{33}:\dfrac{11}{5}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{21}{33}-\dfrac{13}{33}+\dfrac{25}{33}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=1\)
\(a)\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}:\left(\dfrac{-6}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\dfrac{-1}{4}\)
\(=\dfrac{7}{6}+\dfrac{-1}{4}\)
\(=\dfrac{11}{12}\)
= 18 x ( \(\dfrac{19}{21}\)+\(\dfrac{8}{9}\))+27 x \(\dfrac{17}{27}\)
=18 x \(\dfrac{113}{63}\)+27 x \(\dfrac{17}{27}\)
=\(\dfrac{226}{7}\)+17
=\(\dfrac{345}{7}\)
Chúc bạn học tốt!!