Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
a2-1>a2-4>a2-7>a2-10
biểu thức A=(a2-1)(a2-4)(a2-7)(a2-10) là tích 4 số <0 nên phải có 1 số<0 hoặc 3 số <0
TH1. a2-10 <0 SUY RA A=0,1,2,3,-1,-2,-3
TH2.a2-10<a2-7<a2-4<0 SUY RA A=0,1,-1
A=1+2+22+...+22015
=>2A=2+22+23+....+22016
=>2A-A=(2+22+23+....+22016)-(1+2+22+...+22015)
=>A=22016-1<22016=B
=>A<B
A=1+2+22+....+22015
=>2A=2.(1+2+22+....+22015)
=>2A=2+22+23+....+22016
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
Ta có A là tích của 99 số âm ==>A là số âm
Ta lại có -A=(1-\(\frac{1}{2^2}\))(1-\(\frac{1}{3^2}\))......(1-\(\frac{1}{100^2}\))=\(\frac{3}{4}\).\(\frac{8}{9}\)......\(\frac{99.101}{100^2}\)=\(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\)......\(\frac{99.101}{100^2}\)=\(\frac{1.2.3^2.4^2....99^2.100}{2^2.3^2.4^2.5^2.....100^2}\)=\(\frac{2.100}{2^2.100^2}\)=\(\frac{1}{200}\)==>A=\(\frac{-1}{200}\)>\(\frac{-1}{2}\)
A = (1/22 - 1).(1/32 - 1).(1/42 - 1)...(1/1002 - 1)
A = -3/22 . (-8/32) . (-15/42) ... (-9999/1002)
A = -(3/22 . 8/32 . 15/42 ... 9999/1002) ( vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)
A = -(1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... 99.101/100.100)
A = -(1.2.3...99/2.3.4...100 . 3.4.5...101/2.3.4...100)
A = -(1/100 . 101/2)
A = -101/200 < -100/200 = -1/2
Vậy A < -1/2
Ta có: \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{100^2}-1\right)< \)
\(< \left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\left(\frac{-1}{2}\right).\left(\frac{-2}{3}\right).\left(\frac{-3}{4}\right)...\left(\frac{-99}{100}\right)=-\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}\right)=\frac{-1}{100}\)
Mà \(\frac{1}{100}< \frac{1}{2}\Rightarrow\frac{-1}{100}>\frac{-1}{2}\) ( vì số âm nên ngược lại số dương)
Nên A > -1/2
CHÚC BẠN HỌC TỐT
Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)
Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)
Suy ra A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2
Vậy A < 2
\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)