Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1^2+1/2^2+1/3^2+1/4^2+.....+1/50^2
<1/1.2+1/2.3+1/3.4+1/4.5+.....+1/50.51
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/50-1/51
=1/1-1/51
=50/51
Mà 50/51<2
=>A=........<2
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
Ta có
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2};\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3};...;\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
ta có:
1/1^2+1/2^2+...+1/50^2<1+1/1.2+1/2.3+....+1/49.50
A<1-1/2+1/2-1/3+1/49-1/50
A<1-1/50
A<49/50
=>A<2
em mới học lớp 5 thôi ạ chị thông cảm cho em nhé khi nào em lên lớp 5 em sẽ trả lời cho chị nhé còn bây giờ thì chưa được
mình thị học lớp 6 nhưng chưa hiểu thấu đáo mấy bài toán như ri nên mình ko giải được
Phần a, A> 1/3.4+1/4.5+1/5.6+...+ 1/50.51 = 1/3-1/4+1/4-1/5+1/5-1/6+...+ 1/50-1/51 = 1/3-1/51 = 48/153 > 48/192 =1/4. ĐPCM
Phần b, A< 1/3^2+1/3.4+1/4.5+...+1/49.50 = 1/9+1/3-1/4+1/4-1/5+...+ 1/49-1/50 = 1/9+1/3-1/50 = 1/9+47/150 < 1/9+50/150 = 1/9+1/3 = 4/9. ĐPCM
\(A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49x50}=1-\frac{1}{50}\)
\(=>A<1-\frac{1}{50}<2\)
\(=>A<2\)
Ta có:
\(\frac{1}{1^2}=1;\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=>A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}<2\)
=> A < 2
k nha