K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Có: \(A=\frac{10^{2017}}{10^{2018}+1}\)

\(\Rightarrow10A=\frac{10^{2018}}{10^{2018}+1}=1-\frac{1}{10^{2018}+1}\)

Có: \(B=\frac{10^{2018}}{10^{2019}+1}\)

\(\Rightarrow10B=\frac{10^{2019}}{10^{2019}+1}=1-\frac{1}{10^{2019}+1}\)

\(Vì10^{2018}+1< 10^{2019}+1nên\frac{1}{10^{2018}+1}>\frac{1}{10^{2019}+1}\)

\(\Rightarrow1-\frac{1}{10^{2018}+1}< 1-\frac{1}{10^{2019}+1}\)

\(hay10A< 10B\)

Suy ra: A < B

9 tháng 5 2018

Ai biết thì giúp mình nha cần gấp

9 tháng 5 2018

\(A=\frac{10^{2017}}{10^{2018+1}}=\frac{10^{2017}}{10^{2019}}=\frac{1}{10^2}\) 

Tương Tự với \(B=\frac{1}{10^2}\)

\(\Rightarrow A=B\)

13 tháng 7 2017

\(A=\frac{10^{2016}+1}{10^{2017}+1}\)

\(A=\frac{10^{2016}+1}{10^{2017}+1}+\frac{10^{2017}+1}{10^{2017}+1}\)

\(A=\frac{10^{2016}+1+10^{2017}+1}{10^{2017}+1}\)

\(A=\frac{10^{2016}+10^{2017}+1+1}{10^{2016}.10+1}\)

\(A=\frac{10^{2016}.\left(1+10\right)+2}{10^{2016}.10+1}\)

\(A=\frac{10^{2016}.11+2}{10^{2016}.10+1}\)

\(A=\frac{11+2}{10+1}\)

\(A=\frac{13}{11}\)(1)

Làm tương tự phần B

Từ 1 và 2 

\(\Leftrightarrow\)\(\frac{13}{11}=\frac{13}{11}\)

\(\Leftrightarrow\)A = B

12 tháng 7 2019

Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)

Ta có: \(\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2019}-1+11}{10^{2020}-1+11}=\frac{10^{2019}+10}{10^{2020}+10}=\frac{10.\left(10^{2018}+1\right)}{10.\left(10^{2019}+1\right)}=\frac{10^{2018}+1}{10^{2019}+1}\)

\(\Rightarrow\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2018}+1}{10^{2019}+1}\)

12 tháng 7 2019

Đặt \(A=\frac{10^{2019}-1}{10^{2020}-1}\)

\(B=\frac{10^{2018}+1}{10^{2019}+1}\)

Dễ thấy \(A< 1\)

Áp dụng kết quả bài trên nếu \(\frac{a}{b}< 1\)thì \(\frac{a+m}{b+m}>\frac{a}{b}\)với m>0

Vậy \(A=\frac{10^{2019}-1}{10^{2020}-1}< \frac{\left[10^{2019}-1\right]+11}{\left[10^{2020}-1\right]+11}=\frac{10^{2019}+10}{10^{2020}+10}\)

\(A< \frac{10\left[10^{2018}+1\right]}{10\left[10^{2019}+1\right]}=\frac{10^{2018}+1}{10^{2019}+1}=B\)

Do đó : A<B