Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
7.
ĐKXĐ: ...
\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow10ab=3\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)
6.
ĐKXĐ: ...
\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+2b^2=3ab\)
\(\Leftrightarrow2a^2-3ab+2b^2=0\)
Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)
\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)
=> Phương trình có nghiệm
Ta có a + b + c = -5 +3 +2 = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)
b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)
\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)
Nên phương trình có nghiệm
Ta có a + b + c = 7 + 6 +(-13) = 0
Nên phương trình có 2 nghiệm:
x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)
c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)
\(\Delta\) = (-7)2 - 4 * 1 * 12= 1
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)
Vậy phương trình có 2 nghiệm x1=4 và x2=3
d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)
\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)
Nên phương trình có nghiệm
Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0
Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)
e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)
\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)
= 9 - 12m + 4m +24m = 9 + 16m
Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm
Ta có a - b + c = 3- (3-2m) +( -2m)
= 3 -3 + 2m - 2m = 0
Nên phương trình có 2 nghiệm
x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)
f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0
(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))
\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)
= 39+12\(\sqrt{3}\)
Nên phương trình có nghiệm
Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0
Phương trình có 2 nghiệm x1= -1;
x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
a) \(x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-2x^2+x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x\left(x-1\right)^2-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\\ \left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy ..............................
b) Đặt \(2x^2+7x-3=a\) theo cách đặt ta có :
\(\left(a-5\right)\cdot a=6\)
\(\Leftrightarrow a^2-5a-6=0\)
nhận xét : \(a-b+c=1-\left(-5\right)-6=0\)
\(\Rightarrow a_1=1\)
\(a_2=\dfrac{-6}{1}=-6\)
Với \(a=a_1=1\) \(\Rightarrow2x^2+7x-3=1\)
\(\Leftrightarrow2x^2+7x-4=0\)
\(\Delta=7^2-4\cdot2\cdot\left(-4\right)=49+32=81\) ( \(\sqrt{\Delta}=\sqrt{81}=9\) )
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_1=\dfrac{-7+9}{2\cdot2}=\dfrac{1}{2}\)
\(x_2=\dfrac{-7-9}{2\cdot2}=-4\)
Với \(a=a_2=-6\) \(\Rightarrow2x^2+7x-3=-6\\ \Leftrightarrow2x^2+7x+3=0\)
\(\Delta=7^2-4\cdot2\cdot3=49-24=25\)
\(\sqrt{\Delta}=\sqrt{25}=5\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_3=\dfrac{-7+5}{2\cdot2}=-\dfrac{1}{2}\)
\(x_4=\dfrac{-7-5}{2\cdot2}=-3\)
Vậy \(x_1=\dfrac{1}{2};x_2=-4;x_3=\dfrac{-1}{2};x_4=-3\) là các giá trị cần tìm