\(\frac{\left(x+3\right)}{2}\)-\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

a) \(\left(x-4\right)\left(x+4\right)-x\left(x+2\right)=10\)

<=> \(x^2-16-x^2-2x=10\)

<=> \(-16-2x-10=0\)

<=> \(x=-13\)

Vậy pt có tập nghiệm S\(\)={-13}

b) \(\frac{\left(x+3\right)}{2}-\frac{\left(x-2\right)}{3}=2-\frac{\left(x+3\right)}{2}\)

<=> \(3\left(x+3\right)-2\left(x-2\right)=2.6-3\left(x+3\right)\)

<=> \(3x+9-2x+4=12-3x-9\)

<=> \(3x+9-2x+4-12+3x+9=0\)

<=> \(4x+10=0\)

<=> \(x=\frac{-5}{2}\)

Vậy pt có tập nghiệm S={\(\frac{-5}{2}\)}

9 tháng 2 2017

a) \(\left(x-4\right)\left(x+4\right)-x\left(x+2\right)=10\)

\(\Leftrightarrow x^2-16-x^2-2x-10=0\)

\(\Leftrightarrow-26=2x\Leftrightarrow x=\frac{-26}{2}=-13\)

b) \(\frac{\left(x+3\right)}{2}-\frac{\left(x-2\right)}{3}=2-\frac{\left(x+3\right)}{2}\)

\(\Leftrightarrow\left(\frac{3\left(x+3\right)-2\left(x-2\right)}{6}\right)=\frac{12-3\left(x+3\right)}{6}\)

\(\Leftrightarrow3x+9-2x+4=12-3x-9\)

\(\Leftrightarrow x+13=-3x+3\)

\(\Leftrightarrow x+3x=-13+3\)

\(\Leftrightarrow4x=-10\Leftrightarrow x=\frac{-10}{4}=-2,5\)

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

11 tháng 3 2020

1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)

<=> 21x - 100x + 900 = 80x + 6

<=> -79x - 80x = 6 - 900

<=> -159x = -894

<=> x = 258/53

Vậy S = {258/53}

2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)

<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5

<=> 7x2 + 2x - 7x2 + 14x = -5 + 2

<=> 16x = 3

<=> x = 3/16

Vậy S  = {3/16}

11 tháng 3 2020

3) 4(3x - 2) - 3(x - 4) = 7x+  10

<=> 12x - 8 - 3x + 12 = 7x + 10

<=> 9x - 7x = 10 - 4

<=> 2x = 6

<=> x = 3

Vậy S = {3}

4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)

<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80

<=> 4x2 + 20x - 4x2 - 32x = -80 - 16

<=> -12x = -96

<=> x = 8

Vậy S = {8}

28 tháng 3 2020

c, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

- Ta có : \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)

=> \(\frac{12\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}\)

=> \(12\left(x-3\right)-8\left(x-1\right)=8\left(x-1\right)\)

=> \(12x-36-8x+8-8x+8=0\)

=> \(-4x-20=0\)

=> \(x=-5\) ( TM )

Vậy phương trình trên có tập nghiệm là \(S=\left\{-5\right\}\)

b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\2x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)

Ta có : \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

=> \(\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

=> \(x-3=5\left(2x-3\right)\)

=> \(x-3-10x+15=0\)

=> \(-9x=-12\)

=> \(x=\frac{4}{3}\) ( TM )

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{4}{3}\right\}\)

28 tháng 3 2020

\(a,\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\frac{2-x}{\left(x+1\right)\left(2-x\right)}+\frac{5x+5}{\left(2-x\right)\left(x+1\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow2-x+5x+5=15\)

\(\Leftrightarrow7+4x=15\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

\(\Leftrightarrow Ptvn\)

\(b,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{10x-15}{x\left(2x-3\right)}\)

\(\Leftrightarrow x-3=10x-15\)

\(\Leftrightarrow x-3-10x+15=0\)

\(\Leftrightarrow-9x+12=0\)

\(\Leftrightarrow-9x=-12\)

\(\Leftrightarrow\frac{4}{3}\)

\(c,\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{6x-18}{\left(x-1\right)\left(x-3\right)}-\frac{4x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4x-4}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow6x-18-4x+4=4x-4\)

\(\Leftrightarrow2x-14=4x-4\)

\(\Leftrightarrow-2x=10\)

\(\Leftrightarrow x=-5\)

\(d,\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{3x-9}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x-4}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow3x-9+2x-4=x-1\)

\(\Leftrightarrow4x-12=0\)

\(\Leftrightarrow4x=12\)

\(\Leftrightarrow x=3\)

\(\Leftrightarrow Ptvn\)

Vậy .................................

a) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-3\right)\left(x^2+x\cdot3+3^2\right)\)

\(=x^3-3^3=x^3-27\)

b) Ta có: \(\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x-2\right)\left(x^2+x\cdot2+2^2\right)\)

\(=x^3-2^3=x^3-8\)

c) Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=\left(x+4\right)\left(x^2-x\cdot4+4^2\right)\)

\(=x^3+4^3=x^3+64\)

d) Ta có: \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2+x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

e) Ta có: \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)\)

\(=\left(x^2-\frac{1}{3}\right)\left[\left(x^2\right)^2+x^2\cdot\frac{1}{3}+\left(\frac{1}{3}\right)^2\right]\)

\(=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3\)

\(=x^6-\frac{1}{27}\)

f) Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)

\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\frac{1}{3}x\cdot2y+\left(2y\right)^2\right]\)

\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)

\(=\frac{1}{27}x^3+8y^3\)

27 tháng 5 2020

d) \(\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+3\right)}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)

ĐKXĐ : \(x\ne-2;x\ne-3\)

\(\Leftrightarrow x+3+x+2=1\)

\(\Leftrightarrow2x=-4\)

\(\Leftrightarrow x=-2\) (không nhận)

Vậy : \(S=\varnothing\)

27 tháng 5 2020

Giai phương trình sau :

a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)

ĐKXĐ : \(x\ne1;x\ne-5\)

Với điều kiện trên ta có :

\(\Leftrightarrow\)\(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{-3}{x-1}=\frac{5}{x+5}\)

\(\Leftrightarrow10-3\left(x+5\right)=5\left(x-1\right)\)

\(\Leftrightarrow10-3x-15=5x-5\)

\(\Leftrightarrow-8x=0\)

\(\Leftrightarrow x=0\) (nhận)

Vậy : \(S=\left\{0\right\}\)

29 tháng 4 2020

Cho mik hỏi

c) \(\frac{8x-56}{x-7}\) đi xuống thành 8x + 56 rùi?

f) \(\frac{x^2+10}{12x\left(x+10\right)}\) đi xuống thì thành x2 - 10 rùi?

Mong bạn trả lời câu hỏi của mik nhanh lên nhé. :)

30 tháng 4 2020

Trước dấu ngoặc là dấu trừ thì khi phá ngoặc đổi dấu, kiểu như: \(x-\left(a-b\right)\rightarrow x-a+b\\ x-\left(a+b\right)\rightarrow x-a-b\)