K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

Mấy bạn giải chi tiết dùm mình , mình cần gấp lắm ạk

Bài 1:

a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)

\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)

b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

10 tháng 2 2020

a, Ta có : \(A=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{x-\sqrt{x}+2-\left(\sqrt{x}+1\right)}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{x-2\sqrt{x}+1}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)

=> \(A=\frac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\frac{\left(x+2\sqrt{x}\right)}{\left(2x-2\sqrt{x}\right)}\)

=> \(A=\frac{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(2x-2\sqrt{x}\right)}\)

=> \(A=\frac{\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}\left(\sqrt{x}-1\right)}\)

=> \(A=\frac{\sqrt{x}+2}{2\sqrt{x}+2}\)

b, Ta có : \(A=\frac{\sqrt{x}+1+1}{2\left(\sqrt{x}+1\right)}=\frac{1}{2}+\frac{1}{2\left(\sqrt{x}+1\right)}\)

- Ta thấy : \(\sqrt{x}+1>0\)

=> \(\frac{1}{2\left(\sqrt{x}+1\right)}>0\)

=> \(\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{1}{2}>\frac{1}{2}\)

=> \(A>\frac{1}{2}\) ( đpcm )