Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
a) Đặt: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)
Ta có: \(x^2+3y^2-2z^2=-16\)
\(\Rightarrow\left(2k\right)^2+3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2=-16\)
\(\Rightarrow4k^2+3\cdot9k^2-2\cdot16k^2=-16\)
\(\Rightarrow4k^2+27k^2-32k^2=-16\)
\(\Rightarrow-k^2=-16\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
Với k = 4
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{3}=4\\\dfrac{z}{4}=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot4=8\\y=3\cdot4=12\\z=4\cdot4=16\end{matrix}\right.\)
Với k = -4
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-4\\\dfrac{y}{3}=-4\\\dfrac{z}{4}=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-4=-8\\y=3\cdot-4=-12\\z=4\cdot-4=-16\end{matrix}\right.\)
Vậy: ...
b) Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Ta có: \(2x^2+2y^2-3z^2=-100\)
\(\Rightarrow2\cdot\left(3k\right)^2+2\cdot\left(4k\right)^2-3\cdot\left(5k\right)^2=-100\)
\(\Rightarrow2\cdot9k^2+2\cdot16k^2-3\cdot25k^2=-100\)
\(\Rightarrow18k^2+32k^2-75k^2=-100\)
\(\Rightarrow-25k^2=-100\)
\(\Rightarrow k^2=-\dfrac{100}{-25}=4\)
\(\Rightarrow k=\pm2\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=2\cdot4=8\\z=2\cdot5=10\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-2\\\dfrac{y}{4}=-2\\\dfrac{z}{5}=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot-3=-6\\y=2\cdot-4=-8\\z=2\cdot-5=-10\end{matrix}\right.\)
Vậy: ...
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)
x : y : z = 3 : 4 : 5
=>x/3=y/4=z/5 => x2/9=y2/16=z2/5 = 2x2=2x2/18=2y2/32=3z2/75
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
suy ra 2x2/18=4 =>x2=36 =>x=6 ; x=-6
2y2/32=4 =>x2=128 => y=8 ; y=-8
3x2/75=4 =>z2=100 =>z=10 ;z=-10
`x : y : z= 3:4:5`
`=> x/3 = y/4 = z/5 <=> x^2/9 = y^2/16 = z^2/25`
Áp dụng dãy tỉ số bằng nhau:
`x^2/9 = y^2/16 = z^2/25 = (2x^2 + 2y^2 - 3z^2)/(18 + 32 - 75) = -100/-25 = 4`.
`=> {(x^2/9 = 4 => x = +-6), (y^2/16 =4 <=> x = +-8), (z^2/25 = 4 => z = +-10):}`
Vậy ...
\(x-\frac{1}{2}=y-\frac{2}{3}=z-\frac{3}{4}\)va \(x-2y+3z=14\)
\(\frac{\Rightarrow\left(x-1\right)}{2}=\frac{\left(-2y+4\right)}{-6}=\frac{\left(3z-9\right)}{12}\)
\(=\frac{\left(x-1-2y+4+3z-9\right)}{\left(2-6+12\right)}\)
\(\Rightarrow-\frac{16}{8}=-2\)
\(\frac{\Rightarrow\left(y-2\right)}{2}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(y-2\right)}{3}=-2\Leftrightarrow x-1=-4\Leftrightarrow x=-3\)
\(\Rightarrow\frac{\left(x-3\right)}{4}=-2\Leftrightarrow z-3=-8\Leftrightarrow z=-5\)
\(b)\)
Theo đề ra:
\(x:y:z=3:4:5\)
\(2x^2+2y^2-3z^2=-100\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất dãy tỷ số bằng nhau:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=4\Leftrightarrow x=12\\\frac{y}{4}=4\Leftrightarrow y=16\\\frac{z}{5}=4\Leftrightarrow z=20\end{cases}}\)