Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(MH \bot \left( P \right),O \in \left( P \right)\) nên hình chiếu của đường thẳng \(MO\) trên mặt phẳng \(\left( P \right)\) là đường thẳng \(HO\)
b) Góc giữa đường thẳng \(MO\) và hình chiếu của đường thẳng đó trên mặt phẳng \(\left( P \right)\) là góc \(\widehat {MOH}\).
a) Ta có:
\(\begin{array}{l}MH \bot \left( P \right) \Rightarrow MH \bot OH\\MK \bot \left( Q \right) \Rightarrow MK \bot OK\\\left( {\left( P \right),\left( Q \right)} \right) = {90^ \circ } \Rightarrow \left( {MH,MK} \right) = {90^ \circ } \Rightarrow MH \bot MK\end{array}\)
Tứ giác \(MHOK\) có \(\widehat {MHO} = \widehat {MK{\rm{O}}} = \widehat {HMK} = {90^ \circ }\).
Vậy tứ giác \(MHOK\) là hình chữ nhật.
Trong \(\left( P \right)\) có đường thẳng \(OH\) vuông góc với \(\left( Q \right)\).
b) Ta có:
\(\left. \begin{array}{l}a \bot \left( Q \right) \Rightarrow a \bot OK\\MH \bot \left( P \right) \Rightarrow MH \bot a\end{array} \right\} \Rightarrow MH\parallel OK\)
Lại có \(MH \bot \left( P \right)\). Vậy \(OK \bot \left( P \right) \Rightarrow OK \bot OH\)
Tứ giác \(MHOK\) có \(\widehat {MHO} = \widehat {MK{\rm{O}}} = \widehat {HOK} = {90^ \circ }\).
Vậy tứ giác \(MHOK\) là hình chữ nhật.
\(\left( {\left( P \right),\left( Q \right)} \right) = \left( {MH,MK} \right) = \widehat {HMK} = {90^ \circ }\).
a) Giả sử ta có hai đường xiên SA, SB và các hình chiếu HA, HB của chúng trên mp(α)
Giả sử HA = HB
Vì SH ⊥ mp(α) nên SH ⊥ HA và SH ⊥ SB và các tam giác SHA, SHB là các tam giác vuông. Hai tam giác vuông SHA, SHB có canh SH chung và HA = HB nên :
ΔSHA = ΔSHB SA = SB
Ngược lại nếu SA = SB thì ΔSHA = ΔSHB ⇒ HA = HB
Kết quả, ta có HA = HB SA= SB (đpcm)
b) Giả sử có hai đường xiên SA, SC và các hình chiếu HA, HC của chúng trên mp(α) với giả thiết HC > HA.
Trên đoạn HC, lấy điểm B' sao cho HA' = HA ⇒ HC > HA'. Như vậy, theo kết quả câu a) ta có SA' = SA. Ta có trong các tam giác vuông SHB', SHC thì :
SC2= SH2 + HC2
SA2 = SH2 + HA2
Vì HC > HA' nên SC2 > SA2 ⇒ SC > SA
Suy ra SC > SA
Như vậy HC > HA ⇒ SC > SA
Lí luận tương tự, ta có : SC > SA ⇒ HC > HA
Kết quả : HC > HA ⇔ SC > SA
a) Gọi SN là một đường xiên khác. Xét hai tam giác vuông SHM và SHN có SH chung. Nếu SM = SN => tam giác SHM = tam giác SHN => HM = HN, ngược lại nếu HM = HN thì tam giác SHM = tam giác SHNSM => SM = SN.
b) Xét tam giác vuông SHM và SHN có SH chung. Nếu SN > SM thì \(HN^2-SN^2-SH^2\) => \(SM^2-SH^2=HM^2\) => HN > HM. Chứng minh tương tự cho chiều ngược lại.
Ta có:
\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABB'A'} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABB'A'} \right)\\\left. \begin{array}{l}N \in A'B' \subset \left( {ABB'A'} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {ABB'A'} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABB'A'} \right) = MN\end{array}\)
\(M\) là trung điểm của \(AB\)
\(N\) là trung điểm của \(A'B'\)
\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABB'A'\)
\( \Rightarrow MN\parallel AA'\parallel BB'\parallel CC'\parallel DD'\)
\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {C{\rm{DD'C'}}} \right)\\MN\parallel C{\rm{D}}\\MN \subset \left( {OMN} \right)\\C{\rm{D}} \subset \left( {C{\rm{DD'C'}}} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {C{\rm{DD'C'}}} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(C{\rm{D}}\).
Gọi \(P = d \cap C'D',Q = d \cap CD \Rightarrow \left( {OMN} \right) \cap \left( {C{\rm{DD'C'}}} \right) = PQ\)
\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABC{\rm{D}}} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\\left. \begin{array}{l}Q \in C{\rm{D}} \subset \left( {ABC{\rm{D}}} \right)\\Q \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow Q \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right) = MQ\end{array}\)
\(\begin{array}{l}\left. \begin{array}{l}N \in A'B' \subset \left( {A'B'C'{\rm{D'}}} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right)\\\left. \begin{array}{l}P \in C'{\rm{D'}} \subset \left( {A'B'C'{\rm{D'}}} \right)\\P \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow P \in \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right) = NP\end{array}\)
Gọi \(E = MQ \cap BC,F = MQ \cap AD,G = NP \cap B'C',H = NP \cap A'D'\)
\(\begin{array}{l}\left. \begin{array}{l}E \in BC \subset \left( {BCC'B'} \right)\\E \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow E \in \left( {OMN} \right) \cap \left( {BCC'B'} \right)\\\left. \begin{array}{l}G \in B'C' \subset \left( {BCC'B'} \right)\\G \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow G \in \left( {OMN} \right) \cap \left( {BCC'B'} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {BCC'B'} \right) = EG\end{array}\)
\(\begin{array}{l}\left. \begin{array}{l}F \in A{\rm{D}} \subset \left( {A{\rm{DD'A'}}} \right)\\F \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow F \in \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right)\\\left. \begin{array}{l}H \in A'D' \subset \left( {A{\rm{DD'A'}}} \right)\\H \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow H \in \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right) = FH\end{array}\)
a: \(a\perp\left(Q\right)\)
b: Hai mặt phẳng (P) và (Q) có vuông góc với nhau
Ta có:
\(\left. \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\\A{\rm{B}}\parallel C{\rm{D}}\\AB \subset \left( {SAB} \right)\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\}\)
\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(AB\) và \(C{\rm{D}}\).
Chọn A.
tham khảo:
a) AA’ vuông góc với mặt phẳng (P)
b) Nếu đường thẳng a vuông góc với mặt phẳng (P) thì hình chiếu của a trên (P) là giao điểm của a với (P).
a:
b: Các điểm không thuộc mp(P) là A,B,C,D
Các điểm thuộc (P) là A',B',C',D'
c: Các điểm thuộc (Q) là A,C,D
Các điểm không thuộc (Q) là B