Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
1) 3B - B = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2B = 3101 - 3 => 2B + 3 = 3101 => n = 101
2) 52.C - C = (53 + 55 + 57 + 59 + ... + 5103) - (5 + 53 + 55 + 57 + ... + 5101)
24C = 5103 - 5
C =\(\frac{5^{103}-5}{24}\).Tương tự,\(D=\frac{13^{101}-13}{168}\Rightarrow C+D=\frac{5^{103}-5}{24}+\frac{13^{101}-13}{168}=\frac{7.\left(5^{103}-5\right)+\left(13^{101}-13\right)}{168}=\frac{7.5^{103}+13^{101}-48}{168}\)
đề câu số 5 là chia hết cho \(5^n\)chứ ko phải là 5 đâu bạn
Câu a mk ko hiểu gì nha xl bn nhìu
b)1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1) . 50
=(-50)
c) 5 + 52 + 53 + ...+ 599 + 5100
=(5+52)+(53+54)+....+(599+5100)
=30+52(5+52)+...+598(5+52)
=30.1+52.30+.....+598.30
=30(1+52+...+598) chia hết cho 6
s1=1+2+3+...+99
s1=99+98+...+1
2s1=100+100+....+100
2s1=100.99
s1=100.99:2=4950(mấy bài sau lam tương tự nha)
4+4^2+4^3+...+4^90 chia hết cho 21
=(4+4^2+4^3)+...+(4^88+4^89+4^90)
=84.1+(4^4+4^5+4^6+...+4^90)
vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21 (ĐPCM)
a)Ta có:S1=5+52+53+…+599+5100
=>5.S1=52+53+54+…+5100+5101
=>5.S1-S1=52+53+54+…+5100+5101-5-52-53-…-599-5100
=>4.S1=5101-5
=>\(S_1=\frac{5^{101}-5}{4}\)
b)S2=2+22+23+…+299+2100
=>2.S2=22+23+24+…+2100+2101
=>2.S2-S2=22+23+24+…+2100+2101-2-22-23-…-299-2100
=>S2=2101-2
2S1=52+53+54+....+5100+5101
2S1-s1=5101-5
S1=5101-5
b) S2=2101-2
a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)
S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)
S=129+2*3+2^3*(1+2)+2^5*(1+2)
S=3*43+2*3+2^3*3+2^5*3
S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3
c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004
S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]
S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )
S = 2*501
S = 1002
a: \(s1=\dfrac{999\cdot\left(999+1\right)}{2}=499500\)
b: =>n(n+1)/2=378
=>n(n+1)=756
=>n^2+n-756=0
=>n=27
c: \(5Q=5+5^2+...+5^{101}\)
=>\(4\cdot Q=5^{101}-1\)
hay \(Q=\dfrac{5^{101}-1}{4}\)