Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
1) -4 - x > 3 => -4 - 3 > x => -7 > x => số nguyên x lớn nhất = -8
2) Vì x2 + 2 \(\ge\) 2 ; y4 + 6 \(\ge\) 6 với mọi x; y => (x2 + 2). (y4 + 6) \(\ge\) 2.6 = 12 > 10
=> Không tồn tại x; y để thỏa mãn
3) A nguyên khi 5 chia hết cho n- 7 hay n - 7 là ước của 5
mà n nhỏ nhất nên n - 7 nhỏ nhất => n - 7 = -5 => n = 2
4) x2 + 4x + 5 = x(x+ 4) + 5 chia hết cho x + 4 => 5 chia hết cho x + 4
=> x + 4 \(\in\) {5;-5;1;-1} => x \(\in\) {1; -9; -3; -5}
5) Gọi số đó là n
n chia 3 dư 1 => n - 1 chia hết cho 3 => n - 1 + 9 = n + 8 chia hết cho 3
n chia cho 5 dư 2 => n - 2 chia hết cho 5 => n - 2 + 10 = n + 8 chia hết cho 5
=> n + 8 chia hết cho 3 và 5 => n + 8 chia hết cho 15 => n + 8 \(\in\) B(15)
Vì n có 4 chữ số nên n + 8 \(\in\) {68.15 ; 69.15 ; ...' ; 667.15}
=> có (667 - 68) : 1 + 1 = 600 số
6) (2x-5).(y-6) = 17 = 1.17 = 17.1 = (-1).(-17) = (-17).(-1)
=> có 4 cặp x; y thỏa mãn
b) \(m=\frac{20n+19}{4n+5}=\frac{20n+25-6}{4n+5}=\frac{5\left(4n+5\right)-6}{4n+5}=5-\frac{6}{4n+5}\)
Để m có giá trị nhỏ nhất => \(5-\frac{6}{4n-5}\) đạt GTLN
n nguyên => 4n-5 nguyên => 6\(⋮4n-5\)
=> \(\frac{6}{4n-5}\)là số nguyên âm nhỏ nhất và là ước của 6
\(\frac{6}{4n-5}=-6\)
=> 4n-5=-1
<=> 4n=4
<=> n=1
Vậy n=1