K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

y=6/3=2 hết

b)

\(Q\left(y\right)?\) không phụ thuộc x có nghiệm hay không chưa biết

\(Q\left(x\right)=x^2-4x+3=\left(x^2-2x\right)-2x+4-1\)

\(Q\left(x\right)=x\left(x-2\right)-2\left(x-2\right)-1=\left(x-2\right)\left(x-2\right)-1\)

\(Q\left(x\right)=\left(x-2\right)^2-1\)

\(Q\left(x\right)=0\Rightarrow\left(x-2\right)^2-1=0\Leftrightarrow\left(x-2\right)^2=1\)

\(\left[{}\begin{matrix}x-2=1\Rightarrow x=3\\x-2=-1\Rightarrow x=1\end{matrix}\right.\)

Kết luận: chứng tỏ đề sai.

22 tháng 3 2017

y=-6/3=-2

16 tháng 4 2019

Để P(y) có ngiệm <=> 3y+6=0 <=> y=-2

Vậy...

Ta có y^4 >=0 => Q(y) >=2>0 => Q(y) vô nghiệm

16 tháng 4 2019

a) Ta có : 

\(P\left(y\right)=3y+6\)có nghiệm khi

                  \(3y+6=0\)

                  \(3y=-6\)

                  \(y=-2\)

22 tháng 3 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

22 tháng 3 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi:

    3y + 6 = 0

    3y = –6

    y = –2

Vậy đa thức P(y) có nghiệm là y = –2.

b) Ta có: y4 ≥ 0 với mọi y.

Nên y4 + 2 > 0 với mọi y.

Tức là Q(y) ≠ 0 với mọi y.

Vậy Q(y) không có nghiệm. (đpcm)

(Giải thích: y4 có số mũ là số chẵn nên nó luôn có giá trị lớn hơn hoặc bằng 0. Kể cả khi bạn thay y bằng số âm vào. Ví dụ, thay y = -2 chẳng hạn thì y4 = (-2)4 = 16 là số dương.)

15 tháng 3 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

15 tháng 3 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi 3y + 6 = 0 3y = -6 y = -2 Vậy đa thức P(y) có nghiệm là y = -2. b) Q(y) = y4  + 2 Ta có: y4  có giá trị lớn hơn hoặc bằng 0 với mọi y Nên y4  + 2 có giá trị lớn hơn 0 với mọi y Tức là Q(y) ≠ 0 với mọi y Vậy Q(y) không có nghiệm.

:3

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.



 

6 tháng 4 2018

\(a)\) Ta có : 

\(3y+6=0\)

\(\Leftrightarrow\)\(3y=-6\)

\(\Leftrightarrow\)\(y=\frac{-6}{3}\)

\(\Leftrightarrow\)\(y=-2\)

Vậy nghiệm của đa thức \(P\left(y\right)=3y+6\) là \(y=-2\)

\(b)\) Ta có : 

\(y^4\ge0\)

\(\Rightarrow\)\(y^4+2\ge0+2=2>0\)

Vậy đa thức \(Q\left(y\right)=y^4+2\) không có nghiệm hoặc vô nghiệm 

Chúc bạn học tốt ~ 

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

6 tháng 4 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

6 tháng 4 2018

a) P(y) = 3y + 6 = 0 <=> 3y = -6 <=> y = -2

                 Vậy -2 là nghiệm của đa thức

b) Ta có : ylớn hơn hoặc bằng 0 => y4 + 2 lớn hơn hoặc bằng 2

               Vậy Q(y) không có nghiệm 

20 tháng 5 2021

a) Cho x2-1=0
            x2=1
            x= 1  hoặc -1

b)Cho P(x)=0
          -x2 + 4x - 5 = 0
          -x2 + 4x = 5
          -x   . x + 4x = 5
          x(-x+4) = 5

TH1: x= 5
TH2: -x+4 = 5
         -x= 1
          x=-1
xong bạn thay số rồi kết luận nhá

20 tháng 5 2021

a,\(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

KL:...

b,\(P\left(x\right)=-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)

\(\Rightarrow VN\)