K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2018

câu 1:

\(a^2+1\ge2a\\ b^2+1\ge2b\\ c^2+1\ge2c\\ a^2+b^2\ge2ab\\ b^2+c^2\ge2bc\\ a^2+c^2\ge2ac\\ \Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ac\right)=2.6=12\\ \Rightarrow a^2+b^2+c^2\ge3\)

Dấu "=" xảy ra khi a=b=c=1

6 tháng 6 2018

Câu 2)
\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)

\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{1}{4xy}+\dfrac{1}{8xy}+\dfrac{29}{8xy}+2xy\)

\(P=\dfrac{1}{2}\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{8xy}+2xy\right)+\dfrac{29}{8xy}\)

Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) và bất đẳng thức Cô-si, ta được:

\(P\ge\dfrac{1}{2}.\left(\dfrac{4}{\left(x+y\right)^2}\right)+2\sqrt{\dfrac{1}{8xy}.2xy}+\dfrac{29}{2\left(x+y\right)^2}\)

\(x+y\le1\)

\(\Rightarrow P\ge\dfrac{1}{2}.4+2.\dfrac{1}{2}+\dfrac{29}{2}=\dfrac{35}{2}\)

Vậy GTNN của P = \(\dfrac{35}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}.\)

Chúc bạn học tốt!

15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

2 tháng 6 2018

a) \(4xy\le\left(x+y\right)^2=1\)

=> \(xy\le4\)

Dấu "=" xảy ra <=> x = y = 1/2

b) A = \(A=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2xy+\dfrac{2}{xy}+4=\left(32xy+\dfrac{2}{xy}\right)-30xy+4\ge8-\dfrac{30}{4}+4=\dfrac{9}{2}\)

Dấu "=" xảy ra <=> x = y = 1/2

14 tháng 6 2018

\(1>=\left(x+y\right)^2>=\left(2\sqrt{xy}\right)^2=4xy\Rightarrow1>=4xy\Rightarrow\frac{1}{2}>=2xy\)(bđt cosi)

\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{\left(x+y\right)^2}+2>=\frac{4}{1^2}+2=4+2=6\)

dấu = xảy ra khi \(x=y=\frac{1}{2}\)

vậy min \(\frac{1}{x^2+y^2}+\frac{1}{xy}=6\)khi \(x=y=\frac{1}{2}\)

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự