Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)
b) Ta có:
\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
a) \(A=\frac{1}{\sqrt{x}+10}\) \(\left(x\ge0\right)\)
có \(\sqrt{x}\ge0\)=> \(\sqrt{x}+10\ge10\)
A lớn nhất <=> \(\sqrt{x}+10\)nhỏ nhất <=> \(\sqrt{x}+10=10\)<=> \(\sqrt{x}=0\)<=> x = 0
Vậy \(maxA=\frac{1}{\sqrt{0}+10}=\frac{1}{10}\)
b) \(B=\frac{4}{2-\sqrt{x}}\) \(\left(x\ge0;x\ne4\right)\)
ta có: \(\sqrt{x}\ge0\)với mọi x
=> \(-\sqrt{x}\le0\Leftrightarrow2-\sqrt{x}\le2\)
B đạt GLNN khi \(2-\sqrt{x}\)lớn nhất \(\Leftrightarrow2-\sqrt{x}=2\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
vậy \(minB=\frac{4}{2-\sqrt{0}}=\frac{4}{2}=2\)