K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

a) \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )

+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )

+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )

+) \(2n-1=-3\Rightarrow n=-1\) ( loại )

Vậy \(n\in\left\{1;0;2\right\}\)

3 tháng 11 2016

Cho mk hỏi nha cái dấu \(⋮\) là j thế

26 tháng 8 2020

A.

( 2x + 1 )( y - 5 ) = 12

Ta có bảng sau :

2x+11-12-23-34-46-612-12
y-512-126-64-43-32-21-1
x0-10,5-1,51-21,5-2,52,5-3,55,5-6,5
y17-711-191827364

Vì x , y thuộc N => ( x ; y ) = { ( 0 ; 17 ) , ( 1 ; 9 ) }

B.

4n - 5 chia hết cho 2n - 1

=> 2( 2n - 1 ) - 3 chia hết cho 2n - 1

=> 3 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(3) = { ±1 ; ±3 }

2n-11-13-3
n102-1

Vì n là số tự nhiên => n = { 1 ; 0 ; 2 }

13 tháng 12 2017

a) (x,y)=(0,17),(1,9)

k mk di

28 tháng 1 2020

a)               ta có : 12 = 6.2 = 2.6 = 12.1 = 1.12

=) 2x+1 = 6;2;12;1

=) x = 0

=) y - 5 = 2;6;1;12

=) y= 7;11;6;17

18 tháng 10 2019

xét n=0 => không thỏa mãn;n=1 => thỏa mãn; 

xét n\(\ge2\)

với n là số chẵn thì 

19n+1n=(19+1)(19n-1  - 19n-2  +... - 1)+ 2.1n = 20A + 2

18n +2n = (18+2)(18n-1-  18n-2.2 +  18n-3.22  - ... -  2n-1) + 2.2n = 20B +2.2n

=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5

n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1

4k chỉ có chữ số tận cùng là 4 hoặc 6

với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)

với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5)  => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn

xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2  +...+ 1) + (18+2)(18n-1 -  18n-2.2 +...+  2n-1)

=20U +20V chia hết cho 5

vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn

27 tháng 9 2019

+) 18 chia 5 dư 3

=> \(18^n;3^n\) có cùng số dư khi chia cho 5.

+) 19 chia 5 dư 4

=> \(19^n;4^n\)có cùng số dư khi chia cho 5

=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5

+) Chúng ta đi tìm n bằng cách quy nạp:

Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)

Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)

Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)

Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)

Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)

Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)

...

Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.

+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)

(i) Với n = 4k ta có: 

Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1;  \(256^k\)chia 5 dư 1

\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)

=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.

(ii) Với n = 4k + 1ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5

=>  n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iii)  Với n = 4k + 2  ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.

=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5

=>  n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iv)  Với n = 4k + 3ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5  dư 10 => chia hết cho 5

=>  n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

=> n không chia hết cho 4 thì  \(1^n+2^n+3^n+4^n\) chia hết cho 5.

Vậy suy ra  \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.

15 tháng 8 2016

c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)                                                                                                                                                            
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........

18 tháng 2 2018

dễ như toán lớp 6 vậy

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

3 tháng 12 2016

a, n=1,3,5,7,9

b, n=2,7

c, n=?

d,n=7

15 tháng 1 2019

đặt mỗi biểu thức trên = một số mũ 2 là đc

15 tháng 1 2019

a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)

Xét m = 0 thì \(n^2+2n+12=0\) (1)

Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)

Do \(\Delta< 0\) nên (1) vô nghiệm  (*)

Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)

Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)

Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)

Do \(\Delta< 0\) nên (2) vô nghiệm (**)

Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)

16 tháng 11 2019

mình thấy hơi khó

22 tháng 8 2015

Toán lớp 6Phân tích thành thừa số nguyên tố

Đinh Tuấn Việt 20/05/2015 lúc 22:51

Theo đề bài ta có: 

 a = p1. p2n $\Rightarrow$⇒ a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.

nguyên 24/05/2015 lúc 16:50

Theo đề bài ta có: 

 a = p1. p2n $$

 a3 = p13m . p23n.

Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)

$$

 m = 1 ; n = 3 hoặc m = 3 ; n = 1

Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)

-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)

-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)

                                                   Vậy a2 có 21 ước số.

 Đúng 0

Captain America

22 tháng 8 2015

Có 21 ước