K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(\sqrt{125}-2\sqrt{20}-3\sqrt{80}+4\sqrt{45}\)

\(=5\sqrt{5}-4\sqrt{5}-12\sqrt{5}+12\sqrt{5}=\sqrt{5}\)

b: \(\sqrt{\left(1-2\sqrt{7}\right)^2}+\sqrt{8+2\sqrt{7}}\)

\(=2\sqrt{7}-1+\sqrt{7}+1=3\sqrt{7}\)

c:\(\dfrac{1}{1-\sqrt{3}}-\dfrac{1}{1+\sqrt{3}}\)

\(=\dfrac{1+\sqrt{3}-1+\sqrt{3}}{-2}=-\dfrac{2\sqrt{3}}{2}=-\sqrt{3}\) 

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg
29 tháng 9 2017

Bài 1:

a/ \(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\) .

\(\Leftrightarrow\dfrac{2\left(x^2-2x+1\right)}{6}=1\)

\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{3}=1\)

\(\Leftrightarrow\left(x-1\right)^2=3\) \(\Rightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+1\\x=-\sqrt{3}+1\end{matrix}\right.\)

vậy tập nghiệm của phương trình S=\(\left\{1-\sqrt{3};\sqrt{3}+1\right\}\)

b/ ta có: \(\dfrac{6}{x-4}=\sqrt{2}\Leftrightarrow\sqrt{2}\left(x-4\right)=6\)

\(\Leftrightarrow x\sqrt{2}-4\sqrt{2}=6\)

\(\Leftrightarrow x\sqrt{2}=6+4\sqrt{2}\)

\(\Leftrightarrow x=\dfrac{6+4\sqrt{2}}{2}=4+3\sqrt{2}\)

vậy \(x=4+3\sqrt{2}\) là nghiệm của phương trình

c/ \(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)

\(\Leftrightarrow\left(\sqrt{\dfrac{20}{2x^2-8x+8}}\right)^2=\left(\sqrt{5}\right)^2\)

\(\Leftrightarrow\dfrac{20}{2\left(x^2-4x+4\right)}=5\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)^2}=\dfrac{10}{2}\)

\(\Rightarrow\left(x-2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\)

vậy tập nghiệm của phương trình \(S=\left\{2+\sqrt{2};2-\sqrt{2}\right\}\)

29 tháng 9 2017

Bài 2:

a/ đặt A= \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)

\(\Leftrightarrow A^2=3+\sqrt{5}+3-\sqrt{5}-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(\Leftrightarrow A^2=6-2\sqrt{9-5}\)

\(\Leftrightarrow A^2=6-2\sqrt{4}=6-4=2\)

\(\Rightarrow A=\sqrt{2}\)

\(\Rightarrow\)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\) = \(\sqrt{2}\)

\(\Rightarrow\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

b/ \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\dfrac{\sqrt{12}}{\sqrt{15}}+\dfrac{\sqrt{75}}{\sqrt{15}}+\dfrac{\sqrt{27}}{\sqrt{15}}=\sqrt{\dfrac{12}{15}}+\sqrt{\dfrac{75}{15}}+\sqrt{\dfrac{27}{15}}\)

\(=\dfrac{2\sqrt{5}}{5}+\sqrt{5}+\dfrac{3\sqrt{5}}{5}=\left(\dfrac{2\sqrt{5}}{5}+\dfrac{3\sqrt{5}}{5}\right)+\sqrt{5}\)

\(=\sqrt{5}+\sqrt{5}=2\sqrt{5}\)

c/ \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(24\sqrt{5}-80\sqrt{2}+105\sqrt{2}\right):\sqrt{10}\)

\(=\left(24\sqrt{5}+25\sqrt{2}\right):\sqrt{10}=\dfrac{24\sqrt{5}}{\sqrt{10}}+\dfrac{25\sqrt{2}}{\sqrt{10}}\)

\(=12\sqrt{2}+5\sqrt{5}\)

12 tháng 7 2017

Bài 1:

a, \(\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\Rightarrow2x+x=1-5\)

\(\Rightarrow3x=-4\Rightarrow x=-\dfrac{4}{3}\)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\)

\(\Rightarrow x^2-x=3-x\)

\(\Rightarrow x^2-x+x=3\Rightarrow x^2=3\)

\(\Rightarrow x=\pm\sqrt{3}\)

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\)

\(\Rightarrow2x^2-3=4x-3\)

\(\Rightarrow2x^2-4x=0\Rightarrow2x.\left(x-2\right)=0\)

\(\Rightarrow x.\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Chúc bạn học tốt!!!

15 tháng 9 2017

1,

a,\(4\sqrt{\dfrac{9}{2}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}=4\sqrt{\dfrac{18}{4}}+\sqrt{2}+\sqrt{\dfrac{1}{9.2}}=4\dfrac{\sqrt{18}}{2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{1}{2}}=2\sqrt{9.2}+\sqrt{2}+\dfrac{1}{3}\sqrt{\dfrac{2}{4}}=2.3\sqrt{2}+\sqrt{2}+\dfrac{\sqrt{2}}{6}=6\sqrt{2}+\sqrt{2}+\sqrt{2}\dfrac{1}{6}=\dfrac{43}{6}\sqrt{2}\) b,\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=4\sqrt{4.5}-3\sqrt{25.5}+5\sqrt{9.5}-15\dfrac{\sqrt{5}}{5}=4.2\sqrt{5}-3.5\sqrt{5}+5.3\sqrt{5}-3\sqrt{5}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

15 tháng 9 2017

*) Giải phương trình :

\(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) ( ĐKXĐ : x \(\ge\) 2 )

\(\Leftrightarrow\sqrt{4\left(x-2\right)}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(\Leftrightarrow2\sqrt{x-2}+5\sqrt{x-2}-3\sqrt{x-2}=20\)

\(\Leftrightarrow4\sqrt{x-2}=20\)

\(\Leftrightarrow\sqrt{x-2}=5\)

\(\Leftrightarrow x-2=25\)

\(\Leftrightarrow x=27\) ( thỏa mãn điều kiện )

Vậy phương trình có nghiệm x = 27 .

1 tháng 8 2018

1, \(\sqrt{8}-3\sqrt{32}+\sqrt{72}=2\sqrt{2}-12\sqrt{2}+6\sqrt{2}=-4\sqrt{2}\)

2,\(6\sqrt{12}-2\sqrt{48}+5\sqrt{75}-7\sqrt{108}=12\sqrt{3}-8\sqrt{3}+25\sqrt{3}-42\sqrt{3}=-13\sqrt{3}\)

3, \(\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{3}\sqrt{125}=2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{5}{3}.\sqrt{5}=-\dfrac{44}{3}.\sqrt{5}\)

4, \(2\sqrt{5}-\sqrt{125}-\sqrt{80}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}=-7\sqrt{5}\)

5, \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)

2 tháng 8 2018

Thank bạn nhìu nha!!!yeu

16 tháng 12 2022

a: \(=\sqrt{5}-3\sqrt{5}-4\sqrt{3}+15\sqrt{3}=-2\sqrt{5}+11\sqrt{3}\)

b: \(=3\sqrt{10}-\sqrt{5}+6-\sqrt{2}\)

c; \(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}=-11\sqrt{3}+3\sqrt{2}\)

d: \(=3-\sqrt{3}+\sqrt{3}-1=2\)

f: \(=\sqrt{10}-\sqrt{10}-2-2\sqrt{10}=-2-2\sqrt{10}\)

26 tháng 7 2018

Phần lớn bạn nên nhân từng cái nha

26 tháng 7 2018

1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)

2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)

3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)

4 , bạn làm tương tự nhé

5 , bạn làm tương tự nhé

6 , bạn làm tương tự nhé

Bài 2:

a: \(=\sqrt{5}-2\)

b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)

c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)

d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)

e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)

\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)

f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)

\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)