Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.4x^3-8x^2+4xy^3=4x\left(x^2-8x+y^3\right)\)
\(b.x^2+2xy+y^2-36=\left(x+y\right)^2-36=\left(x+y-6\right)\left(x+y+6\right)\) \(c.x^2-2xy+y^2-25=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\) \(d.x^2-5x+2xy-5y+y^2=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\) \(e.49+2xy-x^2-y^2=-\left(x^2-2xy+y^2-49\right)=-\left[\left(x-y\right)^2-49\right]=-\left(x-y-7\right)\left(x-y+7\right)\) \(f.3x^2-6x+3-3y^2=3\left(x^2-2x-y^2+1\right)\)
\(g.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)\left(x+1\right)\)
\(h,\) giống câu f.
\(i.x^3-2x^2y+xy^2-64x=x\left(x^2-2xy+y^2-64\right)=x\left[\left(x-y\right)^2-64\right]=x\left(x-y-8\right)\left(x-y+8\right)\) \(k.3x+3y-x^2-2xy-y^2=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)
Bài nhiều quá... nhìn mik nổi gai ốc lun...oh my god sao mà nhiều vậy nè .
Mik định giải giúp bạn nhưng bây h mik hoảng quá ... nhiều vậy chắc mik chết mất... ToT ... >.< =)))
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(\Leftrightarrow\left(x+2\right)3x\)
\(e,-5x+x^2-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(f,x^3+8+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+8x+4\right)\)
\(g,15x^2-7xy-2y^2\)
\(=15x^2+3xy-10xy-2y^2\)
\(=3\left(5x+y\right)-2y\left(5x+y\right)\)
\(=\left(5x+y\right)\left(3-2y\right)\)
\(h,3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x+5\right)\)
\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(b,4x^2-9y^2+4x-6y\)
\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x+5\right)\)
\(d,x^2+4x-12\)
\(=x^2-2x+6x-12\)
\(=x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x+6\right)\)
a) \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
b) \(x^2+y^2-2xy-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y+5\right)\left(x+y-5\right)\)
c) \(4x^2-4xy+y^2=\left(2x-y\right)^2\)
m) \(81-x^2+2xy-y^2\)
\(=9^2-\left(x-y\right)^2\)
\(=\left(9-x+y\right)\left(9+x-y\right)\)
k) \(x^2-xy-x+y\)
\(=x\left(x-y\right)-\left(x-y\right)\)
\(=\left(x-1\right)\left(x-y\right)\)