Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
1 \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)
\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)
\(A=\frac{2018}{2}=1009\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)
\(B=\frac{1}{3}-\frac{1}{45}\)
\(B=\frac{14}{45}\)
2 \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)
\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)
\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)
\(=\frac{2017}{2018}\times1\)
=\(\frac{2017}{2018}\)
bạn nào xem giải thế có đúng ko
\(\frac{2016}{2017}< \frac{2017}{2018}\)
Đúng 100%
Đúng 100%
Đúng 100%
A = 2021/2022+2020/2021+2019/2020+2018/2019+2017/2018
A<2022/2022+2021/2021+2020/2020+2019/2019+2018/2018
A<1+1+1+1+1
A<5
\(B=\frac{1}{2019}+\frac{2}{2019}+\frac{3}{2019}+...+\frac{2019}{2019}\)
\(=\frac{1+2+3+...+2019}{2019}\)
\(=\frac{\left(2019+1\right).\left[\left(2019-1\right)+1\right]:2}{2019}\)
\(=\frac{2039190}{2019}\)
\(=1010\)
Ta có: \(\hept{\begin{cases}\frac{8}{7}>1\\\frac{2018}{2019}< 1\end{cases}}\Rightarrow\frac{2018}{2019}< 1< \frac{8}{7}\)
hay \(\frac{2018}{2019}< 1< \frac{8}{7}\)
Ta có: \(\frac{45}{95}=\frac{45000}{95000}=1-\frac{50000}{95000}\)
\(\frac{45555}{95555}=1-\frac{50000}{95555}\)
Vì \(\frac{50000}{95000}< \frac{50000}{95555}\) nên \(1-\frac{50000}{95000}>1-\frac{50000}{95555}\)
\(\Rightarrow\frac{45}{95}>\frac{45555}{95555}\)
Ta có: \(\hept{\begin{cases}\frac{12}{25}>\frac{1}{2}\\\frac{25}{49}< \frac{1}{2}\end{cases}}\Rightarrow\frac{25}{49}< \frac{1}{2}< \frac{12}{25}\)
hay \(\frac{25}{49}< \frac{12}{25}\)
\(\frac{2016\times2018+2}{2016\times2017+2018}=\frac{2016\times\left(2017+1\right)+2}{2016\times2017+2018}=\)\(=\frac{2016\times2017+2016+2}{2016\times2017+2018}=\frac{2016\times2017+2018}{2016\times2017+2018}=1\)
a) So sánh \(\frac{2017}{2018}\)với \(\frac{2017}{2019}\)ta thấy \(\frac{2017}{2018}\) lớn hơn\(\frac{2017}{2019}\)(vì có chung tử nên số nào có mẫu lớn hơn thì nhỏ hơn và ngược lại
Tương tự so sánh \(\frac{2017}{2019}\)với\(\frac{2018}{2019}\)ta thấy \(\frac{2017}{2019}\)nhỏ hơn\(\frac{2018}{2019}\)
\(\Rightarrow\frac{2017}{2018}>\frac{2017}{2019}>\frac{2018}{2019}\)hay \(\frac{2017}{2018}\)>\(\frac{2018}{2019}\)
câu b lm tương tự