Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Có: n/n+1 = n+1-1/n+1 = 1-(1/n+1)
n+2/n+3 = n+3-1/n+3 = 1-(1/n+3)
Vì 1/n+1 > 1/n+3
=> 1-(1/n+1) < 1-(1/n+3) hay n/n+1 < n+2/n+3
b,
giả sử n/n+3 < n-1/n+4
<=> n(n+4) < (n+3)(n-1)
<=> n^2 + 4n < n^2 + 2n - 3
<=> 2n < -3 (sai)
vậy n/n+3 > n-1/n+4
c) \(\frac{n}{2n+1}\)= \(\frac{3n}{6n+3}\)< \(\frac{3n+1}{6n+3}\)
Bài 2 :
a) Vì ƯCLN(a,b)=16 nên ta có : \(\hept{\begin{cases}a⋮16\\b⋮16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=16m\\b=16n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà a+b=128
\(\Rightarrow\)16m+16n=128
\(\Rightarrow\)16(m+n)=128
\(\Rightarrow\)m+n=8
Vì ƯCLN(m,n)=1 và m>n nê ta có bảng sau :
m 7 5
n 1 3
a 112 80
b 16 48
Vậy (a;b)\(\in\){(112;16):(80;48)}
b) Gọi ƯCLN(2n+1,6n+1) là d (d\(\in\)N*)
Vì ƯLN(2n+1,6n+1)=d nên ta có : 2n+1\(⋮\)d và 6n+1
\(\Rightarrow\)2n+1-6n+1\(⋮\)d
\(\Rightarrow\)6(2n+1)-2(6n+1)\(⋮\)d
\(\Rightarrow\)12n+6-12n+2\(⋮\)d
\(\Rightarrow\)4\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(4)={1;2;4}
Mà 2n+1 là số lẻ
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1 và 6n+1 là 2 số nguyên tố cùng nhau
Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.
Gọi ƯCLN của 6n+1 và n là d;
nên 6n+1-6n=1 chia hết cho d => d=1 hoặc -1
=>(6n+1;n)=1
=>BCNN(6n+1;n)=(6n+1)n=6n^2+1
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.