K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

Câu a hình như sai đề mk sửa nha

a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)

         Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)

      Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

                   Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)

                                               \(2x=-\frac{1}{3}\)

                                                \(x=-\frac{1}{6}\)

Vậy Min A=-1 khi \(x=-\frac{1}{6}\)

6 tháng 9 2016

b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

    \(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

           Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

                     Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)

Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)

                            \(\frac{4}{9}x=\frac{2}{15}\)

                            \(x=\frac{3}{10}\)

     Vậy Max B=3 khi \(x=\frac{3}{10}\)

27 tháng 10 2020

Bài 1:

\(a,A=\frac{-25}{28}.0,21=\frac{-25}{28}.\frac{21}{100}=\frac{-25.21}{28.100}=\frac{-1.25.3.7}{4.7.25.4}=\frac{-1.3}{4.4}=\frac{-3}{16}\)

\(b,B=\left(\frac{13}{24}-\frac{29}{30}\right):\left(-10,2\right)=\left(\frac{65}{120}-\frac{116}{120}\right):\frac{-51}{5}=\frac{-51}{120}.\frac{5}{-51}=\frac{-51.5}{120.\left(-51\right)}=\frac{-51.5}{5.24.\left(-51\right)}=\frac{1}{24}\)

13 tháng 10 2016

bn đăng từng câu 1 thôi nhe

 

13 tháng 10 2016

anh tl từng câu một cũng đc mà

13 tháng 1 2017

\(a.\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)

\(\Rightarrow99x=49.\left(2x+1\right)\)

\(\Rightarrow99x=98x+49\)

\(\Rightarrow x=49\)

Vậy : \(x=49\)

\(b.\)

\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)

Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)

\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)

\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)

\(\Rightarrow-3^{x+1}=-9^{1006}\)

\(\Rightarrow-3^{x+1}=-3^{2012}\)

\(\Rightarrow x+1=2012\)

\(\Rightarrow x=2012-1\)

\(\Rightarrow x=2011\)

Vậy : \(x=2011\)

Bài 3:

a) Ta có: \(1.25\cdot\left(-3\frac{3}{8}\right)\)

\(=\frac{5}{4}\cdot\frac{-27}{8}\)

\(=\frac{-135}{32}\)

b) Ta có: \(\frac{-9}{34}\cdot\frac{17}{4}\)

\(=\frac{-9}{4}\cdot\frac{17}{34}\)

\(=-\frac{9}{4}\cdot\frac{1}{2}\)

\(=-\frac{9}{8}\)

c) Ta có: \(-\frac{20}{41}\cdot\frac{-4}{5}\)

\(=\frac{20}{41}\cdot\frac{4}{5}\)

\(=\frac{16}{41}\)

d) Ta có: \(\frac{-6}{7}\cdot\frac{21}{2}\)

\(=-\frac{6}{2}\cdot\frac{21}{7}\)

\(=-3\cdot3=-9\)

Bài 4:

a) Ta có: \(-\frac{5}{2}\cdot\frac{3}{4}\)

\(=-\frac{5\cdot3}{2\cdot4}=\frac{-15}{8}\)

b) Ta có: \(4\frac{1}{5}:\left(-2\frac{4}{5}\right)\)

\(=-\frac{21}{5}:\frac{14}{5}\)

\(=-\frac{21}{5}\cdot\frac{5}{14}\)

\(=-\frac{21}{14}=-\frac{3}{2}\)

c) Ta có: \(1.8:\left(-\frac{3}{4}\right)\)

\(=\frac{9}{5}:\frac{-3}{4}\)

\(=\frac{9}{5}\cdot\frac{4}{-3}\)

\(=-\frac{12}{5}\)

d) Ta có: \(\frac{17}{15}:\frac{4}{3}\)

\(=\frac{17}{15}\cdot\frac{3}{4}\)

\(=\frac{17}{20}\)