Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
∆'=3+9=12
x1=(√3-2√3)/3=-√3/3
x2=(√3+2√3)/3=√3
b.
<=>
x+y=-3(1)
2x-3y=-1(2)
(1).2-(2)<=>5y=-5;y=-1
=>(x,y)=(-2;-1)
bạn có thể nào trình bày bài làm một cách chi tiết hơn được không
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
nếu là lớp 8 thì rất hoan nghênh
a) \(\Delta'=\left(\sqrt{3}\right)^2-3\cdot\left(-3\right)=12>0\)
phương trình có 2 nghiệm phân biệt:
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{3}+\sqrt{12}}{3}=\sqrt{3}\\x=\dfrac{\sqrt{3}-\sqrt{12}}{3}=-\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
kết luận: \(x=\sqrt{3}\), \(x=-\dfrac{\sqrt{3}}{3}\)
b) \(\left\{{}\begin{matrix}x\left(x-1\right)+y=\left(x+1\right)\left(x-3\right)\\2x-3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(x+1\right)\left(x-3\right)-x\left(x-1\right)\\2x-3\left(\left(x+1\right)\left(x-3\right)-x\left(x-1\right)\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(x+1\right)\left(x-3\right)-x\left(x-1\right)\\2x-3\left(-x-3\right)=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(x+1\right)\left(x-3\right)-x\left(x-1\right)\\5x+9=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
kết luận: \(\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
1/ \(\left\{{}\begin{matrix}7x-3y=5\\\dfrac{x}{2}+\dfrac{y}{3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x-3y=5\\\dfrac{1}{2}x+\dfrac{1}{3}y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{3}x-y=\dfrac{5}{3}\\\dfrac{3}{2}x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{23}{6}x=\dfrac{23}{3}\\7x-3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(2;3\right)\)
2/ \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\3x+y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(2;-3\right)\)
3/ \(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=10\\3x-2y=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=21\\2x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(3;-1\right)\)
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
Bài 1:
Lấy PT $(1)$ trừ PT $(2)$ ta có:
\(x^2-y^2=3y-3x\)
\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)
$\Rightarrow x-y=0$ hoặc $x+y+3=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:
\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)
$\Rightarrow x=1$ hoặc $x=2$
Tương ứng ta thu được $y=1$ hoặc $y=2$
Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:
\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)
\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)
Vậy..........
Bài 2:
Lấy PT(1) trừ PT(2) ta có:
\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)
\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)
\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)
\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)
Nếu $x=y$. Thay vào PT (1) có:
\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)
Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$
Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$
$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$
$\Rightarrow y=\mp \sqrt{2}$
Vậy........
a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-1\\2x-3y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6x+4y=-2\\6x-9y=12\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}13y=-14\\2x-3y=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=-\frac{14}{13}\\2x-3.\left(-\frac{14}{13}\right)=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=-\frac{14}{13}\\x=\frac{5}{13}\end{matrix}\right.\)
Vậy phương trình trên có nghiệm ( x;y ) = ( \(\frac{5}{13};-\frac{14}{13}\) )
b, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne2\end{matrix}\right.\)
- Ta có : \(\frac{5}{x-2}-\frac{4}{x-1}=3\)
=> \(\frac{5\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=3\)
=> \(5\left(x-1\right)-4\left(x-2\right)=3\left(x-2\right)\left(x-1\right)\)
=> \(5x-5-4x+8-3x^2+6x+3x-6=0\)
=> \(10x-3x^2-3=0\)
=> \(\left(3x-1\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right.\) ( TM )
Vậy phương trình trên có tập nghiệm là \(S=\left\{3;\frac{1}{3}\right\}\)