Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
Bài 1:
b) Ta có:
\(16^5=2^{20}\)
\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)
\(\Rightarrow B=2^{15}.2^5+2^{15}\)
\(\Rightarrow B=2^{15}\left(2^5+1\right)\)
\(\Rightarrow B=2^{15}.33\)
\(\Rightarrow B⋮33\) (Đpcm)
c) \(C=5+5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)
\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)
\(\Rightarrow C=Q.30\)
\(\Rightarrow C⋮30\) (Đpcm)
Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)
Vậy \(A⋮3\)
b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)
\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)
\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
Vậy \(B⋮33\)
c, Tương tự câu a nhưng nhóm 2 số
Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)
Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài
b, \(2n+7⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài
c, tương tự phần b
d, Vì : \(4n+3⋮2n+6\)
Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)
\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)
\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)
\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)
Vậy \(n\in\varnothing\)
Câu 2:
b) ĐKXĐ: \(x\ne-1\)
Để \(\frac{3x+5}{x+1}\) là số nguyên thì \(3x+5⋮x+1\)
\(\Leftrightarrow3x+3+2⋮x+1\)
mà \(3x+3⋮x+1\)
nên \(2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{0;-2;1;-3\right\}\)(tm)
Vậy: Khi \(x\in\left\{0;-2;1;-3\right\}\) thì \(\frac{3x+5}{x+1}\) là số nguyên
Câu 3:
a) ĐKXĐ: \(n\ne-3\)
Gọi \(d=ƯCLN\left(n+4;n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow n+4-n-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)
hay \(\frac{n+4}{n+3}\) là phân số tối giản(đpcm)
b) Gọi \(e=ƯCLN\left(n+2;2n+5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+4⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow2n+4-2n-5⋮e\)
\(\Leftrightarrow-1⋮e\Leftrightarrow e=1\)
hay \(ƯCLN\left(n+2;2n+5\right)=1\)
\(\Leftrightarrow\frac{n+2}{2n+5}\) là phân số tối giản
c) Gọi \(f=ƯCLN\left(2n+1;3n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮f\\3n+1⋮f\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮f\\6n+2⋮f\end{matrix}\right.\Leftrightarrow6n+3-6n-2⋮f\)
\(\Leftrightarrow1⋮f\Leftrightarrow f=1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)
hay \(\frac{2n+1}{3n+1}\) là phân số tối giản(đpcm)
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Bài 1 :
Gọi d là ước chung của 2n + 1 và 3n + 2 ( \(d\in Z;d\ne0\) )
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
Vì \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
Vì \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
Vậy \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
Bài 2 : thiếu đề ?
Bài 3 :
Để A nguyên \(\Rightarrow2⋮n-1\Rightarrow n-1\) thuộc ước của 2
\(\Rightarrow n-1\in\left\{1;-1;-2;2\right\}\Rightarrow n\in\left\{2;0;-1;3\right\}\)
Vậy \(n\in\left\{2;0;-1;3\right\}\) thì A nguyên
1)
Gọi d là UCLN (2n+1;3n+2)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)3(2n+1)\(⋮\)d=)6n+3\(⋮\)d
\(\Rightarrow\)2(3n+2)\(⋮\)=)6n+4\(⋮\)d
Vì 6n+3 và 6n+4 \(⋮\)d nên
(6n+4)-(6n+3) chia hết cho d
1\(⋮\)d
=)\(\dfrac{2n+1}{3n+2}\)tối giản với mọi n
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
+) Vì : \(2n+3⋮d;2\in N\)
\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)
Mà : \(4n+1⋮d\)
\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)
\(\Rightarrow\) d là ước của 5 ; d nguyên tố
\(\Rightarrow d=5\)
Với \(d=5\Rightarrow4n+1⋮5\)
\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)
Vì : \(n\in N\Rightarrow5n⋮5\)
\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)
Thử lại : n = 5k + 1 ( \(k\in N\))
\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)
\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)
\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được
\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản
Vậy \(n\ne5k+1\)
Hai câu cuối tương tự
c) 1. 10n+2 \(⋮\)2n-1
=> 5(2n-1) +7 \(⋮\)2n-1 => 7\(⋮\)2n-1
2. 2n+3\(⋮\)n-2
=> 2(n-2) +7\(⋮\)n-2 => 7\(⋮\)n-2
3. 3n+1 \(⋮\)11-2n
=> 6n+2 \(⋮\)2n-11
=> 3(2n-11) +35\(⋮\)2n-11
=> 35\(⋮\)2n-11
a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8
nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8
nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4
nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9
cũng 3 năm r chưa lm nên k biết có đúng k
Bài 1:
Giải:
Ta có: \(a+b=-3\)
\(\Rightarrow a+b+c=-3+c\)
\(\Rightarrow a+\left(-5\right)=-3+c\)
\(\Rightarrow a-c=\left(-3\right)-\left(-5\right)\)
\(\Rightarrow a-c=2\)
Mà \(c+a=-4\)
\(\Rightarrow a=\left(-4+2\right):2=-1\)
\(\Rightarrow c=\left(-4\right)-\left(-1\right)=-3\)
Lại có: \(b+c=-5\)
\(\Rightarrow b+\left(-3\right)=-5\)
\(\Rightarrow b=-2\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(-1;-3;-2\right)\)
Bài 2:
\(P=78+\left|78-129\right|+\left(-29\right)\)
\(\Rightarrow P=78+\left[-\left(78-129\right)\right]+\left(-29\right)\)
\(\Rightarrow P=78+\left(-78\right)+129+\left(-29\right)\)
\(\Rightarrow P=100\)
1.Cho A=\(\dfrac{n+1}{n-2}\)
a)Tìm n ∈ Z để A là phân số
Để A là phân số thì n+1;n-2 ∈ Z ; n-2 khác 0
<=> n ∈ Z; n >2
Vậy A là phân số <=> n ∈ Z; n>2
b)Tìm n∈Z để A∈Z
A ∈ Z <=> n+1 chia hết cho n-2
<=>n-2+3 chia hết cho n-2
<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)
<=>n-2 ∈ Ư(3)={1;-1;3;-3}
<=>n ∈ {3;1;5;-1}
Vậy để A ∈ Z thì n ∈ {3;1;5;-1}
c)Tìm N∈Z để A lớn nhất
2.Cho B=\(\dfrac{3n+2}{4n+3}\)
Chứng minh B tối giản
1c) Tìm n∈Z để A lớn nhất:
Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)
=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất
<=>n-2 nhỏ nhất; n-2>0; n-2∈Z
<=>n-2=1
<=>n=3
Vậy A lớn nhất <=> n-3
a) E = -(a+b-c) + (c-b+a) - (-b+c-a)
= -a - b + c + c - b + a +b - c + a
= (-a+a+a) + (b-b-b) + (c+c-c)
= a - b + c
b) Do n ∈ N ⇒ n \(\ge0\) ⇒ 2n \(\ge0\) và 2n chẵn ⇒ 2n+1\(\ge1\) và 2n+1 lẻ
⇒ (-1)2n+1 = -1
⇒ 400.(-25).(-1)2n+1.(-2)3 ⇔ 400.(-25).(-1).(-8) = -80000
Vậy với n ∈ N thì 400.(-25).(-1)2n+1.(-2)3 = - 80000