\(52.22=1144\left(m^2\right)\)

b) Diện tích 1 v...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\) 

\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)

\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )

Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)

Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)

b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

mà x là số nguyên

nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3

30 tháng 11 2016

giúp e vs các a cj soyeon_Tiểubàng giải

Phương An

Hoàng Lê Bảo Ngọc

Silver bullet

Nguyễn Huy Tú

Nguyễn Như Nam

Hoàng Tuấn Đăng

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

26 tháng 4 2018

1.

Cạnh huyền là: \(\sqrt{2a^2}\)

=> Chu vi đáy = \(2a+\sqrt{2a^2}\)

=> Sxq = \(2a\left(2a+\sqrt{2a^2}\right)\)

=> Stp = \(a^2+2a\left(2a+\sqrt{2a^2}\right)\)(đvdt)

p/s: Hình như là k rút gọn đc

2. Đề sai k ạ ? Tui lm k ra = 2, nếu mà đề đúng thì tui 0 biet lam

28 tháng 4 2018

đề đúng r ạ

Bn thử lại giùm mk

Gọi giao điểm của BF và HI là O (1)Vì ABEF là hình chữ nhật (cmt) \(\Rightarrow BF\)lần lượt là tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)( tc )\(\Rightarrow\hept{\begin{cases}\widehat{ABF}=\frac{1}{2}\widehat{B}\\\widehat{AFB}=\frac{1}{2}\widehat{C}\end{cases}}\)Mà \(\widehat{B}=\widehat{C}\)( tc )\(\Rightarrow\widehat{ABF}=\widehat{AFB}\)Vì ABEF là hcn \(\Rightarrow AE\)là tia phân giác của góc BAF...
Đọc tiếp

Gọi giao điểm của BF và HI là O (1)

Vì ABEF là hình chữ nhật (cmt) 

\(\Rightarrow BF\)lần lượt là tia phân giác của \(\widehat{B}\)và \(\widehat{C}\)( tc )

\(\Rightarrow\hept{\begin{cases}\widehat{ABF}=\frac{1}{2}\widehat{B}\\\widehat{AFB}=\frac{1}{2}\widehat{C}\end{cases}}\)

Mà \(\widehat{B}=\widehat{C}\)( tc )

\(\Rightarrow\widehat{ABF}=\widehat{AFB}\)

Vì ABEF là hcn \(\Rightarrow AE\)là tia phân giác của góc BAF (tc)

\(\Rightarrow\widehat{BAE}=\widehat{FAE}\)

Xét \(\Delta ABO\)và \(\Delta AFO\)có: 

\(\hept{\begin{cases}\widehat{ABF}=\widehat{AFB\left(cmt\right)}\\AB=AF\left(tc\right)\\\widehat{BAE}=\widehat{FAE}\left(cmt\right)\end{cases}}\)\(\Rightarrow\Delta ABO=\Delta AFO\left(g-c-g\right)\)

\(\Rightarrow OB=OF\)( 2 canh tương ứng ) Mà \(O\in BF\)

\(\Rightarrow O\)là trung điểm của BF

Vì ABEF là hcn \(\Rightarrow\)2 đường chéo AE và BF cắt nhau tại trung điểm mỗi đường (tc)

Mà \(O\)là trung điểm BF

\(\Rightarrow O\)là trung điểm BF

\(\Rightarrow AE\)cắt BF tại O (2)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow AE,BF,HI\)đồng quy

 

0
5 tháng 6 2020

C1: nghiệm của phương trình 2x+6=1 là:

A. x =-2,5

B. x =2,5

C. x=3,5

D. x=-3,5

C2:Tập nghiệm của phương trình 2x̣̣(x-3)=0

A. S={0}{0}

B. S = {0; 3}

C. S={3}{3}

D. S=∅

C3: Tập nghiệm của phương trình \(\frac{3x-2}{2}=x\)3x−22=x là:

A. S = {2}

B. S={2}{−2}

C. S=∅

D. S=[1][1]

C4:Tập nghiệm của phương trình x2-16 =0

A. S={16}{16}

B. S={4}{4}

C. S={4}{−4}

D. S = {-4; 4}

C5: Bất phương trình 2x-3>0. Có nghiệm là:

A. x>1

B. x>1,5

C. xB. x>-1,5

D. x<1,5

C6:Bất phương trình 5x<2x-3 Có nghiệm là:

A. x <-1

B. x > 1

C. x >-0,5

D. x <0,5