K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được

\(AC^2=AH^2+CH^2\)

Ta có: \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2=BH^2+CH^2+2\cdot AH^2\)

b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

Áp dụng định lí pytago vào ΔACH vuông tại H, ta được

\(AC^2=AH^2+HC^2\)

Ta có: \(AB^2-AC^2=AH^2+BH^2-AH^2-CH^2=BH^2-CH^2\)(1)

Áp dụng định lí pytago vào ΔEHB vuông tại H, ta được

\(EB^2=EH^2+HB^2\)

Áp dụng định lí pytago vào ΔEHC vuông tại H, ta được

\(EC^2=EH^2+HC^2\)

Ta có: \(EB^2-EC^2=EH^2+BH^2-EH^2-CH^2=BH^2-CH^2\)(2)

Từ (1) và (2) suy ra \(AB^2-AC^2=EB^2-EC^2\)(đpcm)

4 tháng 2 2020

a)

+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:

\(AB^2=AH^2+BH^2\) (định lí Py - ta - go) (1).

+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:

\(AC^2=AH^2+CH^2\) (định lí Py - ta - go) (2).

Từ (1) và (2) \(\Rightarrow AB^2+AC^2=\left(AH^2+AH^2\right)+\left(BH^2+CH^2\right)\)

\(\Rightarrow AB^2+AC^2=AH^2+AH^2+BH^2+CH^2\)

\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)

Hay \(AB^2+AC^2=BH^2+CH^2+2AH^2\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #