Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d \(\in\)ƯC(12n +1; 30n + 2 ) , d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}30n+2⋮d\\12n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+4⋮d\\60n+5⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số trên là tối giản
Gọi d \(\in\)ƯC(12n +1; 30n + 2 ) , d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}30n+2⋮d\\12n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+4⋮d\\60n+5⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số trên là tối giản
a) Gọi d là ƯCLN của 12n+1/30n+2, ta có
12n+1 chia hết cho d và 30n+2 chia hết cho d, ta có
(12n+1)-(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+20 chia hết cho d
60n+5-60n-4 chia hết cho d
60n-60n+5-4 chia hết cho d
1 chia hết cho d => d=1 hay ƯCLN của 12n+1 và 30n+2
Vậy 12n+1/30n+2 là phân số tối giản
câu b tương tự
đúng mình cái
a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)
Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)
\(\Rightarrow21⋮n-2\)
\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)
gọi d là ưcln của 12n+1 và 30n+2
ta có 12n+1chia hết cho d và 30n+2 chia hết cho d
=>12n+1-30n+2=60n+5-60n+4 chia hết cho d
=1 chia hết cho d
vậy 12n+1/30n+2 là phân số tối giản
nhớ k cho tui nhé
de 12n +1 /30n+2 la phan so toi gian <=>UCLN(30n+2 ;12n+1) =1
goi UCLN (12n+1 ; 30n +2 ) la d
ta co :
12n+1 chia het cho d => 5 (12n+1)chia het cho d
30n+2chia het cho d =>2 ( 30n +2 )chia het cho d
=>60n +5 chia het cho d
60n+4 chia het cho d
=> 1chia het cho dhay d =1
ket luan ban tu ghi !tk cho minh nha!
Gọi d là UCLN[12n+1,30n+2]
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left[60n+5\right]-\left[60n+4\right]=1⋮d\)
\(\Rightarrow d\in\left\{-1,1\right\}\Leftrightarrow d=1\)
Vậy phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản
gọi d là ƯCLN ( 12n + 1 ; 30n + 2 )
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5 . ( 12n + 1 ) \(⋮\)d ( 1 )
30n + 2 \(⋮\)d \(\Rightarrow\)2 . ( 30n + 2 ) \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)5 . ( 12n + 1 ) - 2 . ( 30n + 2 ) = ( 60n + 5 ) - ( 60n + 4 ) = 1 \(⋮\)d
Mà phân số tối giản thì ƯCLN của tử và mẫu là 1
Vậy phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản