Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Giải:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2}{4}=\frac{3}{6}=\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
\(\Rightarrow\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
Vậy \(\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
a) \(\dfrac{{48}}{{64}} = \dfrac{9}{{12}}\)ta nhân cả 2 vế cho 64.12 được : \(\dfrac{{48}}{{64}}.(64.12) = \dfrac{9}{{12}}.(64.12)\)
\( \Rightarrow \)\(\dfrac{{48.64.12}}{{64}} = \dfrac{{9.64.12}}{{12}}\)\( \Rightarrow \)\(48.12\)= \(9.64\) \( \Leftrightarrow \) 576 = 48.12 = 9.64
\( \Rightarrow \) Ta thấy nhân cả 2 vế với 64.12 ta được 2 vế sau khi rút gọn bằng nhau
b) \(\dfrac{a}{b} = \dfrac{c}{d}\) nhân cả 2 vế với b.d ta có : \(\dfrac{{a \cdot b \cdot d}}{b} = \dfrac{{c \cdot b.d}}{d}\) sau khi rút gọn cả 2 vế ta được : a.b = c.d
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
a)Xét \(VT=\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
Xét \(VP=\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Xét \(VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Xét \(VT=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\left[\frac{b}{d}\right]^2=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
áp dụng tính caahts dã y tỉ số bằng nhau ta có :
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
=> \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\\ \Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\left(đpcm\right)\)
b/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\left(1\right)\)
ta có:
\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)
từ 1 và 2 => đpcm
c/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
đặt \(\frac{a}{c}=\frac{b}{d}=k\)
ta có: a = kc
b = kd
=> \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kc+kd}{c+d}\right)^2=\left(\frac{k\left(c+d\right)}{c+d}\right)^2=k^2\) (1)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kc\right)^2+\left(kd\right)^2}{c^2+d^2}=\frac{k^2c^2+k^2d^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(2\right)\)
từ 1 và 2 => đpcm
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ab}{bc}\)
\(=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ab}{bc}=\frac{a}{c}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{b^2+c^2}\)
Vậy \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (dpcm)
a) Ta có: 6. (-15) = -90;
10.(-9) = = - 90
Vậy tích hai số hạng 6 và -15 bằng tích hai số hạng 10 và -9
b) Nhân hai vế của tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với tích bd, ta được: \(\frac{{a.b.d}}{b} = \frac{{c.b.d}}{d} \Rightarrow ad = bc\)
Vậy ta được đẳng thức ad = bc
a) 6.(-15) = 10.(-9) = -90
b) a/b . bd = ad
c/d . bd = bc
Ta được ad = bc